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THE ULTIMATE LOAD ON PILE FOUNDATIONS:
A STATIC THEORY.

By John H. Griffith, Assoc. M. Am. Soc. C. E.

With Discussion by Messrs. Luther Wagoner, and

John H. Griffith.

Introduction.—In one of his discussions as to the ultimate bearing
power of pile foundations, the late E. Sherman Gould, M. Am. Soc.
C. E., stated that the theories of Goodrich had mathematically ex-
hausted the subject, referring, of course, to a dynamic analysis. It is
interesting, therefore, to note an entire departure from the usual pro-
cedure in a treatment proposed by Desmond* in which he studies a
concrete pile purely by static methods.

A perfected static analysis would appear to have certain advan-
tages over the older methods in that it will either eliminate altogether,
or relegate to a sphere of minor importance, a number of elements the
real significance of which, even in a most precise dynamic theory, is
destined to be rather vague and indeterminate. One might cite, for ex-
ample, the case where the pile bounds back or slowly rises after driving,
owing possibly to a resiliency or sponginess of the soil, or perhaps to a
buoyant effect of the latter on the pile. Such a phenomenon as broom-
ing of the head might likewise be cited. When the engineer analyzes
such perplexing problems as compression of the hammer or the pile,
questions of impact, friction of the guides, measurements of velocity,
and the like, the real import of any one of which will require involved

* Transactions, Am. Soc. C. E., Vol. LXV, 1909. Discussion on paper, “Concrete
Piles” p. 498, by Mr. Thomas C. Desmond.
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analyses by the accomplished physicist, he may often be constrained
to take the viewpoint of such eminently practical engineers as Haswell
and Gould as to some of these matters. In fact, with any final working
formula, to measure such an uncertain element as the penetration and
neglect altogether the earth factors (as is tacitly done in any of the rep-
resentative Sanders’ expressions) would seem to seek a sort of negative
magnification of the effect, reading, as it were, through the wrong end
of the telescope, or taking observations at the short arm of the lever.
Goodrich remarks* that:

“The liability to error is so enormous with small penetrations that no pen-
etration should be trusted much less than 1 in., and no formula can be
guaranteed within a reasonable percentage of error for less penetrations.”

He shows that: “With a total penetration as large as 4 ins. (which
is seldom observed), a variation of 1

8
in. would make this penetration

liable to 3% error.”

Such a static theory will further endeavor to eliminate what Maxwell
has called the historical element. The analysis of Desmond, for exam-
ple, is not concerned with the load status a minute after driving, nor
a year after, but rather in that indefinite period of time when the con-
dition of the earth may be said to correspond with that minimum of
stored energy which exists or tends to exist in Nature for stable equi-
librium; or, if this element is to enter the analysis explicitly, it can only
serve to render the problem more determinate. The dynamic analysis
at best can only cover the situation in the period immediately after
driving.

Then there are such formidable questions as the number of blows
to refusal, the effect of the earth clinging to the pile, and many items
of like moment.

In a larger sense, however, the static treatment should be viewed
as complementary to the older method. A perfected theory of the pile
will neither be confined exclusively to a study of the left-hand member
of the equation of work, nor, in the other case, to the

∫
P ds of the

right-hand member, but, taking a unitary conception of the problem,
will seek to include all variables and a determination of their effect on
the status of ultimate load.

* Transactions, Am. Soc. C. E., Vol. XLVIII, p. 205.
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It is to be hoped that Desmond’s discussion may be the nucleus for
a literature considering this larger view; further, that it may stimulate
engineers to extend their experiments on earth pressures, hitherto con-
fined to retaining walls, to include examinations of pile phenomena as
well, the pile being in many respects a sort of inverted retaining wall
in its analytical features.

The able engineers who have followed exclusively in the paths pio-
neered by Rankine and Moseley seem finally to have reached the prover-
bial blind alley in their attempts to solve the pile problem purely as
a dynamic proposition; but Rankine* himself, it should be considered,
at least implicitly suggested the static method in his attempt to figure
the drawing power of screw-piles and the pressure on foundations. Any
advance, however, in this field, seems to have been restricted, at least
in America, by a too close adherence to his ellipse of stress principle, a
rather subsidiary relation in the paper mentioned, which, while it may
serve its purpose in elementary problems of the retaining wall, is not an
efficient tool for a general investigation in the theory of earth pressure.

The writer will offer herein a few criticisms on the static method
as it has been presented to date, and will outline some views as to
its development along rational and empirical lines. In doing this, the
paper will necessarily be confined to little more than an examination of
the premises of the older authorities and an attempted statement of the
problem. Owing to the scarcity of experimental data directly bearing on
this subject, and an inadequate literature, such an investigation must
be largely a priori in its nature, paving the way for a more rigorous
analysis and suitable experimentation by others.

Existing Methods.—In the first and later editions of his “Civil En-
gineering” (1895), Patton gives the following equations for the “total
bearing power of the pile”:

P = Awx
(

1 + sin. φ

1− sin. φ

)2

+
Sfwx

2

(
1− sin. φ

1 + sin. φ

)
minimum,

P ′ = Awx
(

1 + sin. φ

1− sin. φ

)2

+
Sfwx

2

(
1 + sin. φ

1− sin. φ

)
maximum,

* Philosophical Transactions, Royal Society, 1857.



4 THE ULTIMATE LOAD ON PILE FOUNDATIONS

where w = the weight of a cubic foot of the material,

A = cross-section of the pile at the bottom,

x = depth of the pile in the soil,

S = area of exterior surface of the pile,

f = coefficient of friction of earth on the pile surface.

The expression, wx
(

1∓ sin. φ

1± sin. φ

)
, is the intensity of lateral normal

pressure, minimum and maximum, on the surface of the pile. When
multiplied by the proper coefficient of friction of wood on earth, this
resulting tangential stress, when summed over the whole peripheral
surface of the pile, gives, according to the Patton theory, the frictional
resistance of the soil. The first terms in the right-hand members of
each equation give the pressure on the base. Patton remarks:

“If proper values of φ, S, and f in equations above are determined by ex-
periment, it would seem that these formulæ would produce better and more
reliable results than the more common formulæ would.”

The solution given is the earliest direct attempt to solve the problem
(other than that given by Rankine, before mentioned) that has come
to the writer’s attention.

Very recently, Professor Vierendeel (University of Louvain, Flan-
ders) has treated the subject in more detail, together with the dynamic
method, in a comprehensive work* in which he gives the formula:

R = πDfw
1 + sin. α

1− sin. α

L2

2
= 1.5DfwL2 1 + sin. α

1− sin. α
,

which he deduces by the principle of work, where R = the ultimate
load, D = the mean diameter of the pile, L = the depth of penetration,
w is the unit weight, and α is the natural talus.

It will be seen by a little study that the foregoing methods are prac-
tically in agreement with the aforementioned treatment by Desmond,
in that each makes use of the ordinary Rankine relation, multiplies by
a friction factor, and integrates the stress in one form or another over
the entire surface in contact with the soil.

* “Cours de Stabilité des Constructions” (Tome VI, 1907).
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Viewed as an empirical expedient, such equations should commend
themselves to engineers for practical use in fixing load limits. In this
capacity, they will doubtless excel the ordinary Sanders’ energy formu-
las, if constants are properly evaluated from test loadings, as suggested
by Patton.

A true empirical basis for the study of the pile problem may be
established by actual laboratory tests more easily than in the case of the
retaining wall; for if loads at incipient motion are measured on a model
pile which passes entirely through a reservoir of sand, having a hole
in the base for egress of the pile, actual values of the total peripheral
friction may be obtained and studied with respect to its variation for a
variety of perimeters. Combined effects of basal and lateral stress could
be obtained, of course, by independent experiments. It is important,
however, that the base and lateral effects should be differentiated if
they are to be studied and analyzed.

If, however, the methods given by these authors are to be construed
as rational propositions, then, in their present form, they appear to be
open to serious criticism, because, in making use of Rankine’s expres-
sion for the intensity of stress, they violate his principle of conjugate
stresses, which in this particular case makes the expression of the form,

wx
(

1∓ sin. φ

1± sin. φ

)
, a principal stress, that is, one purely normal to the

surface of the pile and having its maximum value. Consequently, the
notion advanced by these writers of multiplying this principal stress
by a friction factor is incompatible with the well-known principles of
mechanics of stress.

Empirically, however, there is as much justification for the use of
such types of formulas as there is for any of the present-day column
formulas or some of the beam applications. The forms of the expressions
are correct enough, as far as Rankine’s intensity of lateral pressure
is concerned, but, of course, the angle, φ, must be considered as an
arbitrary parameter to be determined for certain soils, and not as the
angle of repose or internal friction. Just what the deviation of this
parameter from the angle of internal friction will be must be determined
by such experiments as have been suggested or by actual tests in the
field for ultimate loading.

A general criticism, of course, is that the problem in its final analysis
will not lend itself to any such elementary forms as a Rankine solution
may be expected to give. Any theory must experience that evolution
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characteristic not alone of the dynamic analysis of the pile and the re-
taining wall, but of all the classical problems in engineering. In such
an evolution the Rankine theory rightfully assumes its place as a prim-
itive, true enough under its own premises, but of which the premises
are not general enough to include the whole range of phenomena either
of the pile or of the retaining wall.

The Rankine Theory.—In view of the fact that the Rankine theory
has already taken its place as the basis for a static analysis of the pile,
it is important that it be rigorously stated. The following is conceived
to be an exact solution, with no assumptions except those contained in
Rankine’s premises.

Fig. 1.

Consider a pulley-shaped
foundation, with data as indi-
cated in Fig. 1, which, as in the
case treated by Desmond, may
be a concrete or timber pile jet-
ted or driven to place. Any form
of cross-section might be taken,
but, for simplicity, it is assumed
as circular.

The dotted lines may be con-
sidered to represent displacement
filaments passing out from the
horizontal rims to the free surface
around the head of the pile. The
position of these lines can only
be inferred from the treatises, say
Ketchum’s or Vierendeel’s, as few
if any precise investigations have
been made along this line.

At incipient motion of the
pile, it being assumed that it is
at its final depth, any increment
of the load will cause an actual
displacement of the particles, and
this will manifest itself as an in-
crement or surface displacement
to the upheaval surface which has
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formed around the head of the pile in driving. This assumption is
necessary under the Rankine hypothesis of incompressible particles, al-
though it has been the writer’s experience that the phenomenon is often
difficult to observe at such a stage. The load at this time is considered
to be the ultimate carrying capacity, by the Rankine law.

The area of a small rim of variable radius, r, and width, dr = 2πr dr.

Let p = the intensity of pressure on this rim element.

Then p = wh
(

1 + sin. φ

1− sin. φ

)2

for a maximum,

where w = the weight of a cubic unit of earth,

and φ = the angle of internal friction, assumed as constant.

The total pressure on the element = 2πr dr
(

1 + sin. φ

1− sin. φ

)2

wh.

Now substitute r = (hα − h) tan. α,

and dr = − tan. α dh,

where hα represents the distance from the surface to the vertex of the
cone formed by the surface of the pile, hl = the actual length in the
earth, and α = the angle of slope of the conical surface. The total
pressure on the rim element becomes

2πw
(

1 + sin. φ

1− sin. φ

)2

tan.2 α
∫ 0

hl

−(hα − h)h dh.

In order to take account of a principle of continuity, which in this
case will manifest itself in the law of pressure varying as a function
of the depth, one may conceive that, as the elementary rim pressure
exceeds the amount above given, the pile will tend to subside under
this, so that each rim will take its proportionate quota of stress in
turn. The total buoyant effect is at the limit when the pulley-shaped
foundation becomes a conical-shaped pile. The value of the integral
becomes:∫ 0

hl

−(hα − h)h dh =
[
−
(
hα

h2

2
− h3

3

)]0
hl

= hα
hl

2

2
− hl

3

3
,

and, substituting this in the previous expression,

P(lat.) = 2πw
(

1 + sin. φ

1− sin. φ

)2

tan.2 α
[
hα

hl
2

2
− hl

3

3

]
,
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where the expression, P(lat.) represents the entire upward pressure on
the lateral surface of the pile. To this must be added the basal pressure,
giving, for the total load, P , which the pile can sustain according to
Rankine’s theory:

P = 2πw
(

1 + sin. φ

1− sin. φ

)2

tan.2 α
[
hα

hl
2

2
− hl

3

3

]
+ πrl

2whl

(
1 + sin. φ

1− sin. φ

)2

.

In the case of the “butt end down,” the weight of the variable column
of earth may be similarly summed and added to the load on the pile,
and this equated to the bearing power of the base.

Such an analysis assumes, of course, that the earth conditions,
absence of cohesion, etc., will warrant a treatment by the Rankine
method. It is believed to give all that can consistently be demanded of
the hypothesis.

Limitations of the Theory.—It will be seen that the above applica-
tion is quite limited in its efficiency as a working method. Specifically, it
neglects the friction on the vertical projections of the face. Indeed, the
Rankine premises do not take cognizance of any foreign body, such as
the pile, but confine the problem to an indefinite extent of the material.

While it assumes the existence of displacement tubes, it makes

Fig. 2.

no analytical provision as to their zone of
action, unless one may take any series of
vertical and horizontal lines as defining
the field.

The usual applications of this the-
ory assume a constant coefficient of fric-
tion, which, in the light of experiment, is
only approximately tenable; but, confin-
ing the problem to its own more partic-
ular domain, the chief limitation is the
necessity of the assumption of Moseley’s
law of least resistance as Rankine re-
ferred to it, at once either the element
of weakness or of strength in his method, as one may prefer to call it.

Consider an ordinary wedge element of the material, Fig. 2, with
vertical and horizontal faces and an inclined face the normal of which,
n, is inclined at an angle, θ, with the horizontal. The area of this θ-face
may be conveniently taken as unity.



THE ULTIMATE LOAD ON PILE FOUNDATIONS 9

Let the intensity of the vertical stress be considered in this particular
case as due to a column of earth of length y feet below the surface of the
ground, the value of which is Yy. The corresponding intensities upon
the x- and θ-planes, respectively, are Xx and R. The stress, R, has an
obliquity of ±ε from the normal. By compounding stresses, by any of
the elementary methods, there results the general expression:

Xx =
tan. θ

tan.(θ ± ε)
Yy.

To evaluate Xx, another condition is required. Rankine sought
to supply this condition through the Moseley assumption, taking the
obliquity, ±ε, as having its maximum value, φ, at impending motion
of the particles. By seeking the maximum and minimum values of

tan. θ

tan.(θ ± ε)
on this basis, there results then, for the particular values of

θ where Rankine’s value of Xx may be assumed to hold:

θ = multiples of
π

4
− φ

2
, for Xx a maximum,

θ = multiples of
3π

4
− φ

2
, for Xx a minimum,

for positive values of φ, and in a similar manner when φ is negative. For
example, taking a common value of φ = 30◦, one receives Xx = 1

3
Yy and

3Yy, as in the ordinary case. For the above given values of θ, Rankine’s
solution may be considered to hold, but for all other values the prob-
lem is absolutely indeterminate. The common practice of engineers, in
applying this method as a general solution to problems of earthwork,
is quite in keeping with that practice which seeks the deportment of a
column within the elastic limit from tests to destruction.

Neither will the common defense, of the law being on the safe side,
hold in all cases. For instance, it has already been pointed out by
Boussinesq* that, in the case of a retaining wall when it is in its or-
dinary position of equilibrium, otherwise than at the time of incipi-
ent motion, as predicated by Rankine, although the particles are less
forcibly retained, they nevertheless exert upon the structure a greater
thrust than that given by Rankine.

* “Essai théorique sur l’équilibre des massifs pulvérulents, comparé à celui de
massifs solides, et sur la poussée des terres sans cohésion,” (1876), p. 5.
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A number of practical phases of this indeterminateness might be
cited, showing the shortcomings of the method as a theoretical device.
This is made apparent in the packing of balls. For example, a rather
low angle of repose may be expected for fine shot if it is dropped from
a short height, but had one the patience to arrange the shot particle
by particle in a pyramidal array, according to the geometry of packing
spheres, a much higher angle might be obtained for the slope of the
pyramid, and this would be entirely independent of the condition of
the balls, that is, whether rough or frictionless. Further, taking the old
problem of the thousand 1-in. balls* packed in cubical array in a 10-in.
cubical box, it is quite possible to conceive of an angle of repose of 90◦

if the sides of the box could be gently removed, although, of course,
in such a case, the equilibrium would be very unstable. In the latter
cases, the Moseley assumption would be quite justifiable. However,
taking another extreme, say, the thrust of barrels on the walls of a
warehouse, only the exigency of an occasional earthquake could render
the application of the method theoretically permissible. The law is
inoperative.

It is such limitations as have been cited that render the Rankine
method of rather doubtful utility for any general rational treatment,
either of the pile or the retaining wall. European and other than Amer-
ican authorities have ceased treating the Rankine formula as a general
solution for all problems involving the lateral pressure of earth, and pre-
fer to give it its more proper position as defining one particular kind
of equilibrium. Even in its own special field, a solution approaching
nearer the facts may doubtless be secured in many cases by the more
determinate method of Greenhill,† as in the instance of barrel thrust.

Theoretical Position of the Method.—In order, then, to give to the
Rankine theory applied to the pile that definiteness of position which
attaches, say, to that of Euler’s formula in the column theory, it may be
defined as the theory of an infinitely smooth shaft afloat on a medium
deporting in several respects as a sort of generalized fluid, where the
particles are subject to negative normal stresses or pressures and to
tangential or friction stresses, but where no permanent shearing resis-
tance exists. In such a theory the vertical pressures may be assumed
to follow the hydrostatic law. The horizontal pressures will also follow

* Quoted by Greenhill from “Cosmos,” September, 1887, “Hydrostatics,” p. 52.
† Greenhill’s “Hydrostatics,” pp. 45 et seq.
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this law, but, owing to friction, the effect is such as would occur with a

reduced specific weight, w
(

1± sin. φ

1∓ sin. φ

)
, where φ is the angle of internal

friction, or, as Rankine referred to it usually, the angle of repose. The
(±) signs are to be used in the above for the case of maximum load-
ings, in which case the pressure exerted by the pile is a so-called “active
force,” as the term is used by Rankine. The (∓) signs are for minimum
loads on the pile, namely, if the “buoyancy” of the surrounding earth
(viewing this now as an active force) is greater than the load on the
pile, as prescribed by this theory, the pile will tend to rise, and may
actually do so, especially if the medium contains more or less water.

Accordingly, it will be seen that the laws of pulverulent masses will
agree well with the theory originally advanced by Boussinesq,* and
given later by Flamant,† Greenhill,‡ and others, in that they are inter-
mediate in their properties between fluids and solids. Fresh cement,
in its ordinary condition, will follow closely the hydrostatic law, but,
under pressure, will take on the properties of elastic bodies. Even the
Rankine equations, if consistently interpreted, find analogies in the the-
ory of stress and strain in solids on the one hand (Tresca), and agree
with the hydrostatic law for φ = 0, on the other.

A dynamics of pulverulence is quite possible to formulate under
such a notion, and would probably find practical applications in de-
signing orifices for the discharge of grain, etc. Under this caption such
phenomena as have been described by Vierendeel§ as occurring at the
circumference of disk piles, and by Le Conte‖ and Goodrich,¶ as “cones”
and the like, forming under the bases of models, would probably find
interpretation as suppressed vortex or eddy effects.

Practical Utility of the Rankine Formula.—While the Rankine the-
ory is little more than an abstraction, and if consistently and rationally
applied to a single pile can only be expected to give a fraction of the
real carrying power, its utility to the practicing engineer may still ex-
ist in the fact that a multiple-pile system may be tested by Rankine’s

* “History of the Elasticity and Strength of Materials,” Vol. II, Pt. II, Article on
Boussinesq, by Karl Pearson.

† “Stabilité des Constructions,” p. 111.
‡ “Hydrostatics,” pp. 45 et seq.
§ “Cours de Stabilité des Constructions,” Vol. VI, p. 246.
‖ Transactions, Am. Soc. C. E., Vol. XLII, p. 284.
¶ Transactions, Am. Soc. C. E., Vol. XLVIII, p. 181.
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equations about as logically as they may be applied to any ordinary
foundation. In such a multiple pile the integrity of the structure is
usually preserved by suitable framing; but, if this were not so, the ma-
terial in the cusp-like interstices between the piles can be expected to
be much more compressed, and consequently to have a considerably
higher friction factor, than the less restrained material at the periph-
ery of the composite structure, thus tending to maintain this unity of
action.

In a multiple pile great reliance is placed on the increased density
of the soil, due to the driving, with the corresponding increase in the
friction coefficient. As the condensation under the Rankine premises
is purely inelastic, an approximate idea of the increase in density may
be found by an equation between the displacement of the pile and the
upheaval mass around the head.

Nearly all writers, with the exception of Vierendeel, in discussing the
bearing power of foundations, follow Rankine in ignoring the stresses on
the side walls, and confine their analysis solely to the base. Accordingly,
on the common theory, a designer of a multiple pile would neglect the
peripheral friction on the composite structure in comparison with the
presumably larger pressure on the base. In this case such a procedure
can be viewed as giving only crudely approximate results. It is believed
that the phenomenon of dilatancy of media composed of rigid particles,
as studied by Professor Osborne Reynolds,* may even warrant the belief
that this lateral friction is larger than supposed, especially in water-
bearing strata. The writer will revert to this point later.

The Elastic Theory.—Nearly all the structural problems of engi-
neering find their ultimate analysis in the elastic hypothesis. This is
true of the arch, and in a large measure of the retaining wall. Just as
the beam, on account of the labors of de St. Venant and his contem-
poraries, owes its truly rational position to such elastic studies, quite
independent of the empiricists, the column theory, with of course a few
possible exceptions, may be said to have made no consistent advances
since the days of Euler by departing therefrom.

While to place such an apparently crude and sordid problem as
the pile in this field will undoubtedly seem inopportune, it is believed

* Philosophical Magazine (London, E., and D.), Vol. XX, 1885, p. 469. “On the
Dilatancy of Media Composed of Rigid Particles in Contact;” also Reynolds’
Works, Vol. III.
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that, in the end, such a step will avoid a great deal of useless effort
and incorrect thinking. It is thought important to bring out a few
arguments pro and con as to the advisability of such procedure.

In the first place, to make the problem of the lateral pressure of
earth truly determinate, the idea of strain is involved. Its introduction
into the analysis is due to Boussinesq. Take the case previously cited,
of the problem of the balls packed in the 10-in. box in cubical array.
The problem of their lateral pressure against the walls owing to their
own weight becomes at least theoretically determinate, provided all the
stress and strain constituents of the material are known, and the elastic
deportment of the walls is understood. Although such elastic solutions
are in many cases extremely difficult to obtain, on the other hand, they
have the advantage of a high degree of certainty of result, and will tend
to obviate that endless modification so common, say, in column and
pile formulas.

As contributing data toward such a final and correct analysis, ideal
problems, approximating in part toward the actual conditions, may be
solved. For example, it may be shown that:

“If a vertical cylindrical hole of circular section is cut in a rigid body, and an
elastic cylinder of density ρ, which, if freed from the action of gravity, would
exactly fit the hole, is placed in it and stands upon the bottom, ∗ ∗ ∗ the
sides of the hole suffer the same hydrostatic pressure as if it were filled with
a liquid of density ρ(m− n)(m + n).” (Ibbetson.)

Slichter,* in commenting along this line, remarks:

“It is important ∗ ∗ ∗ that we should have before us the solution of as
many problems as possible, since the most likely method by which we shall
be able to solve a new problem is by reducing it to one of the cases in which
a similar problem has been constructed by the inverse process. Indeed, one
must often be content to secure an approximate solution in a given case by
searching among problems already solved for one whose equipotential lines
or surfaces have a form somewhat resembling the given boundary, and then
so to modify the problem by tentative methods as to produce conditions
more nearly corresponding to those of the given problem. For this reason it
is desirable to solve all possible kinds of problems ∗ ∗ ∗ whether they seem
to be ‘practical’ or not.”

* “Theoretical Investigation of the Motion of Ground-Waters,” by C. S. Slichter
(Government Printing Office, Washington, D.C., 1899), p. 333.
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Accordingly, Coulomb, Rankine, Weyrauch, Levy, Boussinesq,
Kötter, and others, have contributed much in their study of vari-
ous kinds of equilibrium. The work of Boussinesq, while furnishing
valuable researches in the whole field, seems to be carefully ignored by
the practicing profession.

Such an elastic hypothesis, it has been urged, is less applicable to
the case of earth pressure than in the case of any other medium, it being
difficult to predicate continuity laws of the medium and the existence
of derivatives, as is done in hydrodynamic and elastic theories. As
sufficiently typical of such criticism, the remarks of Darwin* are closely
to the point.

“It has always been assumed by previous writers that the tangential action
across an ideal interface in a mass of loose earth is of the same nature as
the statical friction between solids, and that when the tangential stress has
attained in magnitude a certain fraction of the normal stress, the equilibrium
is on the point of breaking down. ∗ ∗ ∗ A little consideration will show that
the hypothesis cannot be exact, even with an ideal sand with incompressible
grains, and absolutely devoid of coherence. For imagine a mass of sand
thrown loosely together; then if the grains are of irregular shape a certain
portion of them will be resting on points and angles, thus occupying more
space than they might do.

“If the sand be now compressed, many of the grains will slip and rotate,
and fall into interstices; in fact a considerable amount of re-arrangement
will take place, and the density of the mass will rise considerably—by quite
10 per cent. if the re-arrangement be thorough, as found experimentally.

“Even if all the grains were spherical a considerable amount of change would
take place, and when they are angular of course much more. ∗ ∗ ∗

“Hence it is clear that the coefficient of internal friction of sand is a function
of the pressure, and not merely of the pressure then existing, but also of the
pressure and shaking to which at some previous period that portion of the
mass of sand has been subjected. ∗ ∗ ∗

“It is quite impossible to say how much these causes will vitiate any math-
ematical theory of the equilibrium of sand, but experience seems to show
that the vitiation is extensive.”

* Minutes of Proceedings, Inst. C. E., Vol. LXXI, 1883, “On the Horizontal Thrust
of a Mass of Sand,” pp. 374 et seq.
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On the other hand, in the elastic theory, the researches of Boussi-
nesq* show that pulverulent material when under pressure—such as
may occur in this particular case of the pile owing to impacted soil
through driving, even more than in the retaining wall—resists a change
of form with a force which is proportional to the mean of the three
principal stresses acting on the particle. He takes the coefficient of
rigidity, µ, as varying with this mean pressure. As the weight on the
particle increases, either owing to its own “head,” or, in this case, to
the compressed soil in driving, the surrounding medium approaches an
elastic body in its properties. Under great pressure, of course, it be-
comes perfectly so, thus justifying geologists or physicists in calculating
earth stresses, delta pressures, faults, etc., by known elastic methods.

Now, the writer believes that there is a tacit notion, prevalent
among representative engineers, which is quite conformable to such
an hypothesis, and in support of this belief would quote the remarks of
Goodrich:†

“When a pile is supported entirely by the frictional resistance, the actual
region supporting the load is some deep ground level at which the frictional
resistance holding the pile has been transferred through the earth in the
shape of a conoid of pressure, the base of which gives a total bearing value
equal to the load and a unit bearing value which the earth at that lower
level will support. Each kind and degree of compactness of earth will give a
different angle for the slope of the conoidal surface.”

Again, he says:

“When supported by frictional resistance, they [the piles] must be driven so
far apart, or to such a depth, that the increased area of bearing developed
by the conoid of pressure having the required altitude of frictional resistance
meets a level which will afford the required support before intersecting the
conoid of a neighboring pile.”

Such a description would seem to show analogies with the “fan”
distribution of Stokes and Carus Wilson,‡ with the local perturbations
of Boussinesq,‡ or some of the equipollent effects of de St. Venant.

* “Essai théorique ∗ ∗ ∗ ,” p. 6.
† Transactions, Am. Soc. C. E., Vol. XLVIII, “Supporting Power of Piles,” pp. 182

et seq.
‡ Proceedings, Physical Society of London, Vol. XI, 1891, p. 194, “The Influence

of Surface-Loading on the Flexure of Beams.”
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It is natural to ask, however, how the inelastic distortions of Darwin
can be made to harmonize with the other views. The answer would be
by postulating or defining the medium. Slichter,* in a somewhat related
problem involving a study of the flow of ground-waters through a soil,
has attacked his problem very successfully by the assumption of a mean
soil. The size of the grains in a soil having the same transmission power
as the more complex soil he calls the “effective” size. He says:

“There probably exists a tendency in every such soil toward a certain aver-
age size and mean arrangement of grains which the theory of probabilities
would justify us in setting up as an ideal soil to replace a given soil in the
investigation.”

The same remarks may be applied to the analysis of the pile and
related phenomena. It is this idealization of the problem which is tacitly
done in all the problems of engineering, perhaps, however, with less
justification at this time in the theory of earth pressure, on account of
the lack of physical investigation.

On the whole, the opinion of elasticians, Darwin and de St. Venant
included, would seem to be favorable to an elastic analysis of the prob-
lem of the lateral pressure of earth and pulverulent material. Pearson,†

in his critique of the elastic analysis of Boussinesq, has said:

“They appear to contain the most complete scientific theory yet given of the
stability of such a mass ∗ ∗ ∗ indeed, they are perhaps the limit to what
elastic theory can provide in these directions.”

In view of the dearth of knowledge of strain and friction factors,
little progress can be made. It is believed, however, that as engineers
direct their attention to the static outlook and conduct experiments
along this line, a great many features now rather obscure will clear up.
Such a study also affords another angle of vision upon the pile viewed
dynamically and the retaining wall.

General Notions.—For purposes of discussion, consider a pile driven
or jetted to place and carrying, say, its maximum load. It is desired to
investigate the mechanical state of the soil as it reacts upon the pile
and prevents its further subsidence under the load. The principles of

* “Theoretical Investigation of the Motion of Ground-Waters,” p. 305.
† “History of Elasticity and Strength of Materials,” Vol. II, Pt. II, pp. 313 and

357.
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mechanics* furnish the following well-known equations for the static
equilibrium of a volume element of the material surrounding the pile,
say, a small parallelopiped the co-ordinates of which, as shown in Fig. 3,
are x, y, and z.

δXx

δx
+

δXy

δy
+

δXz

δz
+ ρX = 0

δYx

δx
+

δYy

δy
, +

δYz

δz
+ ρY = 0

δZx

δx
+

δZy

δy
+

δZz

δz
+ ρZ = 0

Using the Kirchoff notation, as preferable to that of Lamé, the ex-
pression, Xx, represents the intensity of normal stress on the elementary
area, dy dz, of the parallelopiped, that is, the stress acting in the di-
rection of the x-axis upon the plane element, dy dz, perpendicular to
this plane. Briefly, Xx represents the x-stress upon the x-plane. In a
similar manner, Xy is the x-stress on the y-plane, a shearing or tan-
gential stress; Zz is a normal stress upon the z-plane, and so on. Since
the shears at right angles are always equal, then Yx = Xy, Zx = Xz,

Fig. 3.

Zy = Yz; but, for convenience of men-
tal retention, the symmetrical nota-
tion commends itself. The equiva-
lence can be asserted as desired in
calculations of any particular prob-
lem.

The expressions, ρX, ρY , and
ρZ, where ρ is the density, repre-
sent “body forces,” such as gravity
or “centrifugal” force. In this case,
these volumetric forces may be the
components of gravity in the direc-
tion of the co-ordinate axes, or, as
these are taken in Fig. 3, ρX = ρZ =
0, and ρY = the weight of the earth
per cubic foot in the engineer’s nota-
tion. For sand charged with water,
this would be, say, 110 lb., or as the case might be.

* “Theory of Elasticity,” by Love, Chapter V, pp. 122 et seq.
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The foregoing equations, as used by Rankine* in his original paper,
are rigid body equations. Boussinesq,† by introducing a comprehensive
theory of strain, formulates an independent system for the theory of
earth pressure. There are, of course, relations of compatibility in the
general problem which will show analytically, as already shown for the
Patton equations, that the engineer cannot choose his values at random.

Thus far, as the writer has discovered, few practical data in the
matter of strain are accessible for different earths. Reference to this
must be brief. The theory, then, will be founded on stress relations, as
in the ordinary beam formula, for practical purposes.

In the case of conical or cylindrical piles, the equations for static
equilibrium in a final analysis will be best expressed in the well-known
cylindrical co-ordinates, the notation being similar to that used before,
namely:

δYy

δy
+

δYr

δr
+

δYφ

r dφ
+

Yr

r
+ ρY = 0

δRy

δy
+

δRr

δr
+

δRφ

r dφ
+

Rr − φφ

r
+ ρR = 0

δφy

δy
+

δφr

δr
+

δφφ

r dφ
+

φr + Rφ

r
+ ρφ = 0

Fig. 4.

In these equations the capital let-
ters give the direction of action of
the stress and the subscripts refer to
the planes on which they act. For
example, φy represents the intensity
in the direction of the normal to the
plane, dr dy, on the y-plane, that is,
the plane, dr r dφ, etc. The shears in
rectangular directions, as in the pre-
vious case, are equal.

In this more complicated case,
however, owing to the symmetry
about the y-axis, or axis of the pile, the “hoop compression” becomes
constant around any particular ring element of the radius, r. The shears

* Philosophical Transactions, Royal Society, 1857.
† “Essai théorique sur l’équilibre d’élasticité des massifs pulvérulents ∗ ∗ ∗ ,”

p. 24, etc.
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also vanish on the φ-planes, that is, any of the faces, dy, dr. This distri-
bution of stresses, when a solution of the various particular intensities
is obtained, may ultimately be used for obtaining the tubes of stress,
their intensities and slopes at any point, in the conoid described by
Goodrich.

Now, to make any particular problem a determinate one, such types
of equilibrium equations as have been given are to be satisfied for all
values of the variables and for certain boundary conditions, namely, at
the upheaval surface and at the entire periphery of the pile. In a con-
tinuous beam the analogy exists in the state at the supports. Similarly,
a correct column formula must not only satisfy such equilibrium equa-
tions along the axis, but also hold for very long and very short columns.
The problem under discussion is relatively more determinate than in
the column problem, as the best that may ultimately be expected in
the latter case is a least-square solution.

At the surface of the pile the following type of equations must be
satisfied, as well as for the upper surface.*

Xn = Xx cos.(xn) + Xy cos.(yn) + Xz cos.(zn)

Yn = Yx cos.(xn) + Yy cos.(yn) + Yz cos.(zn)

Zn = Zx cos.(xn) + Zy cos.(yn) + Zz cos.(zn)

To make these expressions clear, it may be remarked that the surface
of the pile, being in the general case the surface of a cone, will trans-
form the volume element of earth, dx dy dz (Fig. 3), into a tetrahedral
element. And these equations assert the equilibrium of all stresses on
the tetrahedron in the directions, x, y, and z, respectively.

Call the surface element of the pile, that is, the inclined face of
the tetrahedron element, the n-face, because its normal is, say, n. Let
its area be unity, for convenience of discussion. Then the other faces,
namely, the x, y and z-faces, respectively, are cos.(xn), cos.(yn), and
cos.(zn), where (xn), (yn), and (zn) are the angles between the x, y,
and z-directions and the normal of the n-face or n. Accordingly, Xn is
the resultant stress component in the x-direction on the surface element
of the pile. A similar set holds for the ground surface, but becomes very
much simpler owing to vanishing of terms when the upheaval surface is
assumed as horizontal.

* “Theory of Elasticity,” by Love, Chapter V, pp. 122 et seq.
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Now, in a precise and finished analysis involving the strain relations,
both the boundary equations just given and the equilibrium equations
are usually expressed in terms of these strains. Just as they are ne-
glected in the derivation of the beam formula, they will be neglected
here. The two sets of equations will be used solely as stress relations,
as given, to keep the problem within working bounds.

A two-dimensional solution only can be attempted at this time,
on account of the analytical difficulties involved in the more general
treatment. It is believed, however, that a general solution exists in the
case where the “immersed” length of pile is zero in the Boussinesq*

problem of the distribution of stress and strain due to a rigid cylinder
resting upon an infinite elastic solid, combined, of course, with suitable
superpositions to provide for the weight of the soil. Moreover, since the
strain in the earth at some distance from the body is quite independent
of the manner of distribution of the peripheral stresses, but will depend
rather on the resultant statically equivalent to them, it is thought that
this solution for immersion of length zero may actually be taken for
finite lengths of the pile. It would seem to the writer that the existence
of the “cone” under the base will approximately justify this.

All authors, from Barlow and Rankine to the present time, have
pleaded a lack of experimental data with which to correlate their math-
ematical investigations. The writer has felt this constraint in his at-
tempts to get any trustworthy results from the case given, after analyz-
ing the problem from different points of view; but, while these efforts
have been largely fruitless, they have afforded certain lines of approach
in analyzing the “conoid.”

One of these is that, in the case of experiment, instead of restricting
the investigation solely to the special case of granular or pulverulent
media, as all engineers have heretofore done, the problem should be
generalized to include media which have elastic properties within lim-
its, say clay, hardpan, spongy soils, and very probably sand in its most
compact position, especially when it is charged with water. It is be-
lieved that, eventually, when more experiments have been made, these
premises will be easier to work to than in the case of granular media.

* “Application des potentiels à l’étude de l’équilibre et du mouvement des solides
élastiques,” 1885.
“History of Theory of Elasticity,” Todhunter-Pearson, Vol. II, Pt. II, p. 237.
Love’s “Theory of Elasticity,” Chapter VIII.
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In some preliminary experiments along this line, made for the pur-
pose of throwing light upon more precise efforts to be undertaken, C. J.
Green, Jun. Am. Soc. C. E., and the writer used rather fine and com-
pacted saw-dust, in a duplication of the Goodrich* experiment made
with sand. Such a saw-dust medium will permit a considerable magni-
fication of the strain that may be expected in an actual case, when a
small vertical motion of the model pile is made in the medium, keeping
the “pile” close to the glass wall of the box. Leygue,† in his experiments
on retaining walls, used a series of strata of a different colored medium
to bring out the faults in the sand and confirm his notion of a curved
surface for the interior face of the Coulomb wedge. In like manner,
this notion has been tried by “sprinkling” a series of co-ordinate lines
of any convenient medium on the face of the glass wall when laid flat
with the “pile” in place, and laying over this the saw-dust, with a view
of showing the strained lines when a small vertical displacement of the
“pile” occurs. The original positions of the co-ordinates are marked on
the glass with a wax pencil.

Two limiting aspects are to be studied: First, the strained condition
for a very smooth or polished prism with a flat base, and then that for
one with serrated or notched faces next to the saw-dust. The first case
simulates that where the pressure on the sides is normal. The second
case approximates the actual status of a pile in a cohesive soil where
the full friction exists. While little of this has been carried out, it is
believed that qualitative data of value will be obtained by using, not
only straight prisms, but also wedges of rectangular cross-section with
the faces next the material inclined to and from the vertical. It is
hoped in the first case to obtain the deportment of the material under
the pile. Preliminary experiments seem to confirm, partially at least,
such a flow of stress as has been already derived both experimentally
and analytically by Hertz‡ in the well-known problem of the pressure
between two elastic bodies in contact. It is thought, by carrying out the
Goodrich experiment as thus described, not only for sand, but also for
other “more springy” media, that a great deal of light may be afforded,
not only on the basal action of the pile, but also on the related problems

* Transactions, Am. Soc. C. E., Vol. XLVIII, p. 181.
† Annales des Ponts et Chaussées, 1885.
‡ Hertz, “Miscellaneous Papers,” Translation by Jones and Schott.

Hertz, J. F. Math. (Crelle), Bd. 92 (1881).
Love’s “Theory of Elasticity,” p. 195.
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of surface loading, as in beams, etc. Here, analysis is already far ahead
of experiment, at least for elastic bodies.

In the second case, it is desired to discover the zone of action in
regard to the lateral friction in a cohesive and elastic soil. In the sub-
sequent analysis this can only be assumed for the case of pulverulent
material.

Two-Dimensional Stress Relations.—With the Rankine premises
the uniplanar or two-dimensional case is easily extended to three di-
mensions by the assumption of a vertical axis of symmetry, namely,
his ellipse of stress relation becomes an ellipsoid of stress; but, when
the influence of a body such as the pile is concerned, the problem be-
comes greatly complicated, involving a solution in the case of stress
alone of the equations of equilibrium in cylindrical co-ordinates subject
to proper boundaries, as has been shown. The writer has been unable
to obtain general solutions for these, as has been already remarked.

It is proposed, in accordance with the suggestion of Slichter, to at-
tempt an approximate solution as the best available at this time. Such
a solution, accordingly, may be considered to be a second approxima-
tion to that already given by Patton and by Desmond, but it will avoid
largely the Rankine inconsistencies. This may then be used in studying
the experimental data at hand with a view to discovering the general
law, if such law does not already exist, at least for short piles in the
Boussinesq problem of the rigid cylinder.*

Fig. 5.

In a two-dimensional case, ei-
ther of the sets of equilibrium
equations may be applied as it
were to a pile of very large radius,
or, taking as equivalent, a stretch
of sheet-piling. Accordingly, the
piling partakes more or less of the
nature of the retaining wall.

Two-dimensional treatments
of the equilibrium equations have
already been given, in the case of

* “Application des potentiels à l’étude de l’équilibre et du mouvement des solides
élastiques,” 1885 (Gauthier-Villars, Paris).
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the retaining wall, by Kötter* and Boussinesq. As the latter has dis-
cussed local effects particularly, it is believed his results may be applied
to the pile.†

The equilibrium equations, being independent of z, or the direction
in the length of the wall or piling, reduce to

δXx

δx
+

δXy

δy
= 0 for the x-direction,

δYx

δx
+

δYy

δy
+ (ρy = w) = 0 for the y-direction.

The region of perturbation is supposed to extend to the line the
equation of which is

x =

√
1− sin. φ

1 + sin. φ
y =

√
r y,

where the coefficient
√

r, is the square root of the Rankine ratio. This
must here be tentatively assumed. (See Fig. 5.)

The general Rankine relation is assumed to hold outside of this
region at a distance from the pile, namely,

sin.2 φ =
(Xx − Yy)

2 + 4Xy

(Xx + Yy)2
,

which states the expression for the “stability of a mass of earth in terms
of the pressure at a point referred to any pair of rectangular axes, OX ′

and OY ′, in the plane of greatest and least pressure.”‡ Taking 4Xy = 0,
the common expression is easily derived.

As a justification of the use of the above, it is assumed here that the
plunger and cylinder experiments of Goodrich give a fair confirmation.
(Whether 1

5 000
in. ± movement of the “plug” will permit the inference

that the pressure on the plug is of the same intensity as that on the
walls of the cylinder has always raised a query in the writer’s mind.§)

* “Erddrucken auf Stützmauern,” Müller-Breslau (Stuttgart, 1906), pp. 107 et
seq.

† Annales des Ponts et Chaussées, T. III, pp. 625–643.
See also “Theory of Elasticity,” Todhunter-Pearson, Vol. II, Pt. II, p. 347; and
Minutes of Proceedings, Inst. C. E., Vol. LXV, p. 212.

‡ Philosophical Transactions, Royal Society, Vol. 147, p. 18.
§ Transactions, Am. Soc. C. E., Vol. LIII, p. 283.
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Since the weight at the surface, assumed flat, is zero, the boundary
relations become, by the vanishing of terms in the equations for the
tetrahedron:

Y = 0, Yx = Xy = 0.

At the sheet-piling (the retaining wall in the problem of Boussinesq),
there results Xy = tan. φ1Xx, where tan. φ1 is the tangent of the angle
of obliquity of the resultant pressure on the vertical face at the pile.

Boussinesq assumes “that in practice sustaining walls are generally
sufficiently rough to render a thin stratum of the pulverulent mass
stationary upon them. Hence the angle of friction between wall and
mass really reduces to the angle of friction of the pulverulent mass upon
itself.”* This certainly is the maximum value. Kötter differentiates,
however, the obliquity upon the x-face from that on the θ-face. In
the case of sand, on account of dilatancy, the writer will follow the
Boussinesq assumption, but for soils not granular or pulverulent will
obtain such values for the later numerical computations as may be
had from actual tests. Cain, Darwin, and others follow Boussinesq in
retaining-wall design in this respect.

The following solution is given for the equations of equilibrium:

Xx = −1− sin. φ

1 + sin. φ
wy,

Xy = 0,

Yy = −wy,

to apply without the region limited by x−
√

1− sin. φ

1 + sin. φ
y, and these are

the ordinary Rankine relations. Within this region, or in the zone of
perturbation of the pile, the following equations hold:

Xx = −1− sin. φ

1 + sin. φ

(y + x tan. φ)w

1 +

√
1− sin. φ

1 + sin. φ
tan. φ

Yy = − (y + x tan. φ)w

1 +

√
1− sin. φ

1 + sin. φ
tan. φ

* “History of Elasticity,” Todhunter-Pearson, Vol. II, Pt. II, p. 336.
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Yx = Xy =

tan. φ1

√
1− sin. φ

1 + sin. φ

(√
1− sin. φ

1 + sin. φ
y − x

)
w

1 +

√
1− sin. φ

1 + sin. φ
tan. φ

.

In the above set of constituents, the stresses, Xx and Yx = Xy, are
induced stresses, that is, they are called into play on a hypothetical
infinitesimal motion outward of a retaining wall by the pressure head,
Yy. In the Rankine language, they stand to each other in the relation
of “cause to effect.” The pressure head of earth is “active,” and the
induced lateral stress is “passive.”

In the case of piling, however, Yx is the “active” stress. Accordingly,
one would assume, very consistently, that the resultant stress on the x-
face of a small element at the piling is active. To provide for this case,
one might proceed in the ordinary manner of Rankine, namely, take

X

(
1− sin. φ

1 + sin. φ

)2

5 Yy. This would appear to introduce ambiguities

into the problem. The writer will proceed as follows:
Call the passive or smaller ratio of Rankine rp and the active or

larger ratio ra. If Yx and Xx are active, it seems reasonable to assume
that the zone of perturbation due to pile action is larger. The wedge
defining this region, the slant height of which is x =

√
ry, must intersect

the head of the pile at the ground, because, whether “active” or “pas-

sive,” the shears vanish at the pile for y = 0. Let x =
1
√

rp

y =
√

ray.

The following is still true: At any point without the region the general
Rankine relations hold. The constituents hold in general for all values
of the variable within the region; the intensities become zero at the
surface; while, at the pile, for φ = 0, the ordinary Rankine relations
still hold, the more general relations hold for φ1.

To obtain a direct application of this, it is necessary to integrate
the intensity, Yx, over the surface of the pile at x = 0. First call

Yx0 = tan. φ1
1 + sin. φ

1− sin. φ

wy

1 +

√
1 + sin. φ

1− sin. φ
tan. φ1

=
fra

1 + f
√

ra

wy

for simplicity of expression, where f = the coefficient of friction at
the pile, w = the specific weight of the earth, and y = the variable
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depth. To apply this intensity in practice, where cylindrical and slightly
tapering piles are used, the assumption of Vierendeel and the others is
made, that the tangential intensity is independent of the shape of the
perimeter of the pile, a common enough assumption in other branches
of engineering.

By integration there results for a working formula comparable with
the Sanders’ type in simplicity, but based on static considerations:

W =
fra

1 + f
√

ra

wπD
∫ L

0
y dy,

or W =
fra

1 + f
√

ra

wπD
L2

2
,

where πD is the mean circumference, L is the length of pile, w is the
weight of a cubic unit of earth, f is the coefficient of friction, and ra

is the larger Rankine ratio, namely,
1 + sin. φ

1− sin. φ
, φ being the angle of

internal friction, or so-called angle of repose.

Now wπD
L2

2
is the normal hydrostatic pressure on a cylinder for

w = specific weight. Accordingly,
fra

1 + f
√

ra

is a more or less rational

friction factor for the same. While the formula is quite as simple as
Vierendeel’s, it would seem to possess a more rational derivation.

Effect of the Base.—In the above working formula, upward pressure
on the base and sides, other than that due to tangential stresses, has
been disregarded as relatively negligible. This will need to be discussed.

First, in the case of stiff earths possessing some elastic properties,
where a more or less well-defined “conoid of pressure” may be assumed
to exist, the pressure over the base of this conoid is naturally assumed
to be continuous. The principle of equipollent loads (de St. Venant)
shows that it is only in the region of the point that the real distribution
of stress has any effect. In the case of a peg driven into a wooden beam
and carrying a load on its head acting longitudinally to the axis of
the peg, the local effect of the stress would be much the same whether
the point of the peg entered a small knot-hole or butted against sound
wood. The assumption, then, will be that the pressure under the pile
is practically that which exists a foot or two horizontally away. In the
horizontal projection of the lateral surface, the Yy is assumed to be that
for x = 0, y = y1.
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In the case of the Goodrich experiment, with the box and glass
walls, when the model pile is pushed down in the sand close to the
glass face the inverted paraboloid forming under the squared end of
the pile is only two or three end diameters of the pile in height. The
“eddy” action is largely confined to this small region. The Rankine
hypothesis, of necessity, assumes that the action is felt at the surface,
by reason of incompressible molecules arranged in most compact space.
It is believed, however, as has been shown by Bauschinger, Darwin, and
others, that considerable interstitial free space exists in any pulverulent
soil; accordingly, when the pressure occurs it simply compacts the soil
in the immediate region concerned. The assumption, then, for semi-
liquid materials, it would seem to be reasonable, may be similar to
that of the previous paragraph, namely, that the pressure at the point
and sides suffers no sudden breaks or discontinuities from that a short
distance away.

Accordingly, it is thought that the base and lateral buoyancy, when
the point is down, may be amply provided for by taking L a few di-
ameters longer, say to the point of the inverted paraboloid, instead of
to the point of the pile, and using this length with the mean diam-
eter of the pile. Such data, of course, would need to be determined
experimentally; or, perhaps it might be better to consider the friction

factor,
fra

1 + f
√

ra

, simply as an empirical parameter to be determined

for various cases.

Some Data.—In lieu of any precise coefficients of friction and
angles of friction, no great precision can be expected in fitting the
formula to actual cases. In the following the formula has been ap-
plied to the Annapolis* tests, J. P. Carlin, Assoc. M. Am. Soc. C. E.,

Fig. 6.

Engineer in Charge, also to the
well-known Louisiana† pile (Proc-
torville, La., 1856–57).

Case 1 is worked out below in
full, to show the effect of verti-
cal pressure on the side and base.
The developed surface of contact

* The Engineering Record, May 11th, 1901; also Transactions, Am. Soc. C. E.,
Vol. XLVIII, pp. 215 and 218.

† Baker’s “Masonry,” 8th ed., p. 247.
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TABLE 1.—Annapolis Tests.
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1 91 7 22 2 300 22 75 000 105 200 96 500 L =
{60 ft. mud

6 ft. sand

}
= 66 ft.

2 91 7 22 ” 22 85 090 133 610 112 000 L =
{60 ft. mud

12 ft. sand

}
= 72 ft.

3 73 9 18 ” 33 1
2 34 000 95 450 67 000 L = 61 ft. of mud

4 30 12 8 ” 22 38 000 54 400 84 500 Sand.
5 32 13 9 ” 22 110 000 66 500 168 700 Sand.

For Cases 1, 2, and 3, f = 0.1 and φ = 15◦ was used, for Cases 4 and 5,
f = 0.268 = tan. φ, and φ = 15◦.

(See Patton’s “Civil Engineering,” 1st ed., p. 487, for actual test for f in
liquid mud.) w is taken at 110 lb. per cu. ft.

is a trapezoid. The projected area on a horizontal plane is 1.45 sq. ft.
The area of the base is 0.267 sq. ft.

1 + sin. 15◦

1− sin. 15◦ =
1.259

0.741
= 1.70

√
1.70× 0.1 = 0.131

0.1× 1.70

1.131
× 110× 3.25× 66× 28 = 99 500, friction on side,

66

1.131
× 110× 0.267 = 1 700, pressure on base,

28

1.131
× 110× 1.46 = 4 000, pressure on projected face,

W = 105 200, total calculated load.

The common hydrostatic methods of area multiplied by mean head is
used instead of the integration. The Rankine pressure on the base and
projected side is 5 600 and 13 000 lb., respectively, for φ = 15 degrees.*

For the Louisiana case, Baker’s “Masonry” gives the following data:
Pile was 12 in. square throughout, driven 29.5 ft., and bore 29.9 tons

* Note that 100 lb. instead of 110 lb. per cu. ft. will give about 10 000 lb. smaller.
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without settlement. It settled slowly under 31.2 tons. The same values
of f and φ are used as in Cases 4 and 5 of the Annapolis test, namely,
f = 0.268 and φ = 15◦, or

0.268× 1.70

1×
√

1.70× 0.268
× 110× 4× 29.52

2
= 64 800, friction on sides,

29.5

1×
√

1.70× 0.268
× 110× 1.02 = 2 320, pressure on base,

W = 67 120, total calculated load.

The static treatment presented gives an average deviation from fact
about commensurate with that of the most rational dynamic formula.
It is thought, however, that by obtaining actual experimental factors,
based on the physical qualities of the pile, a much closer agreement
would be possible. Most of the recorded data, being made solely with
reference to their availability for comparison and study of dynamic
formulas, omit such information.

The formula presented, being of the form of that given by Vieren-
deel, who neglects the basal action, it should be easy, by drawing tests,
to ascertain the friction, expressed as a function of length and mean
diameter, for different soils.

Dilatancy of Granular Media.—In his interesting discussion of the
Goodrich paper, the late Mr. Gould remarked:*

“Another element which makes for safety, but which baffles calculation, is
the clinging action of the material through which the pile is driven, and
which action is set up immediately after it has been allowed to come to rest.
It is often impossible to draw a defective pile even a very short time after
it has been driven, unless a few blows be given by the hammer to start it,
when it may come up very easily.”

It is believed that the theory of the dilatancy of media composed of
rigid particles in contact, as proposed by Professor Osborne Reynolds,†

will account for this phenomenon noticed and recorded by many en-
gineers. While the theory was formulated to account for the sub-
mechanics of the universe, not the least of its claims is that it will
place the theory of earth pressures on a true foundation. He says:

* Transactions, Am. Soc. C. E., Vol. XLVIII, p. 214.
† Philosophical Magazine (London, E., & D.), Vol. XX, 1885, pp. 469 et seq.; also

Reynolds’ Works, Vol. III.
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“I will point out the existence of a singular fundamental property of such
granular media which is not possessed by known fluids or solids. ∗ ∗ ∗
I have called this unique property of granular masses ‘dilatancy,’ because
the property consists in a definite change of bulk, consequent on a definite
change of shape or distortional strain, any disturbance whatever causing a
change of volume and generally dilation.

“In the case of fluids, volume and shape are perfectly independent; and
although in practice it is often difficult to alter the shape of any elastic body
without altering its volume, yet the properties of dilation and distortion are
essentially distinct, and are so considered in the theory of elasticity. In fact
there are very few solid bodies which are to any extent dilatable at all.

“With granular media, the grains being sensibly hard, the case is, according
to the results I have obtained, entirely different. So long as the grains are
held in mutual equilibrium by stresses transmitted through the mass, every
change of relative position of the grains is attended by a consequent change
of volume; and if in any way the volume be fixed, then all change of shape
is prevented.”

The mathematics of this is long and difficult, in general. The essen-
tial features, as it is desired to apply them in reference to Mr. Gould’s
remarks, may be illustrated by the following experiment:

“If we have in a canvas bag any hard grains or balls, so long as the bag
is not nearly full it will change its shape as it is moved about; but when
the sack is approximately full a small change of shape causes it to become
perfectly hard. There is perhaps nothing surprising in this, even apart from
familiarity; because an inextensible sack has a rigid shape when extended to
the full, any deformation diminishing its capacity, so that contents which did
not fill the sack at its greatest extension fill it when deformed. On careful
consideration, however, many curious questions present themselves.

“If, instead of a canvas bag, we have an extremely flexible bag of india-
rubber, this envelope, when filled with heavy spheres (No. 6 shot), imposes
no sensible restraint on their distortion; standing on the table it takes nearly
the form of a heap of shot. This is apparently accounted for by the fact that
the capacity of the bag does not diminish as it is deformed. In this condition
it really shows us less of the qualities of its granular contents than the canvas
bag. But as it is impervious to fluid, it will enable me to measure exactly
the volume of its contents.

“Filling up the interstices between the shot with water so that the bag is
quite full of water and shot, no bubble of air in it, and carefully closing the
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mouth, I now find that the bag has become absolutely rigid in whatever form
it happened to be when closed.

“It is clear that the envelope now imposes no distortional constraint on the
shot within it, nor does the water. What then, converts the heap of loose
shot into an absolutely rigid body? Clearly, the limit which is imposed on
the volume by the pressure of the atmosphere.

“So long as the arrangement of the shot is such that there is enough water
to fill the interstices the shot are free, but any arrangement which requires
more room is absolutely prevented by the pressure of the atmosphere ∗ ∗ ∗ .

“The very finest quartz sand, or glass balls 3
4 in. in diameter, all give the

same results.”

It would seem that such a state of affairs would tend to exist after
the driving, in the final rearrangement of the particles in granular soils,
and that the phenomenon may throw light on the case, as cited by Mr.
Gould. It would further seem to favor an elastic theory, especially as
one, to use another of Professor Reynolds’ illustrations, may note the
firmness of a sandy beach after the recession of a wave, in contradistinc-
tion to the quite fluid effect of the dry sand. The phenomenon deserves
to be studied in its relation to the pile.

The writer was led to appreciate the importance of the static point
of view, in the theory of the pile, through the suggestions of G. S.
Williams, M. Am. Soc. C. E. He was introduced to the Boussinesq and
Kötter theories* by Professor Alexander Ziwet. In making acknowledg-
ment to these authorities and to Professor A.B. Pierce for discussion
and criticism of these theories, the writer does not wish to be construed
as committing them to these views.

* A number of solutions involving different phases of this problem may be easily
found. Among these the writer would call attention to a treatment of the glacier
by Hopkins, Cambridge Phil. Soc. Transactions, Vol. 8, 1849, in which he treats
the glacier as an elastic body forcing its way between the walls of the valley,
exerting lateral forces and friction on the sides of the stream quite comparable
to the action of a pile in the earth. The Boussinesq literature, however, affords
the most suggestion in addition to that of Kötter.
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D I S C U S S I O N.

Luther Wagoner, M. Am. Soc. C. E. (by letter).—The writerMr.
Wagoner. believes this to be a timely paper, and that, with sufficient data con-

cerning the physical properties of the resisting media, it will be possible
to construct a satisfactory formula for computing the safe bearing load
of a pile by purely statical methods. The assumption of uniform values
of the angle, φ, is probably incorrect, and in what follows the writer will
consider a soil composed of mud to an indefinite depth. The top layer
of such a mud offers but little resistance to penetration, and the resis-
tance appears to increase more rapidly than that of the static pressure
due to depth. In tests made by the writer in Islais Creek, which is an
arm of San Francisco Bay, the top mud is seen to be full of blow-holes,
and relatively there is much water to each unit of solid. A sample of the
material taken at a depth of 10 ft., or 15 ft. below mean tide, weighed
105 lb. per cu. ft. When dried at steam heat it lost 34% of its weight,
or 35.7 lb. of water per cu. ft., which left 0.428 cu. ft. of volume for

69.3 lb. of solids, or
69.3

0.428
= 162 lb. per cu. ft. for the weight of the

solid material, which is about the weight of the rock from which the
mud is derived.

From the foregoing this important deduction can be made: The
mud is the débris of rocks, in an exceedingly fine state of subdivision,
mixed with some clay. Any unit of this material possesses an enormous
surface as compared with its volume, and to this surface the water is
held by capillary action. Both the water and the separate units of the
mud are practically incompressible. The mixture is also incompressible,
and as long as it is saturated it must continue to behave as an imperfect
fluid. For example, a pile driven into such material does not compress
the soil laterally to any extent, but elevates the soil near the pile. A
blanket of rock or earth can be floated upon the mud, and there will be
little or no subsidence if the lateral flow can be prevented by retaining
walls, or, if a flat enough slope is given to the mud thus covered it will
stand. A sharp distinction must be made for soils above and below the
permanent ground-water level; in the first case, the soil has voids, once
occupied by water, and is compressible by pile-drivers, and it is in such
cases that a conical pile gives good results. In the second case, there
can be no compression, but there is an upward displacement.
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The mass of mud may be thought of as made up of small flattish Mr.
Wagoner.particles of solids, arranged, as a rule, nearly level, and the interstitial

space filled with water, or as a solid having an infinite number of cap-
illary tubes of variable diameters. It is obvious that under sufficient
pressure the water will move laterally through the tubes, and the solids
will be brought closer together, at the same time, the diameters of the
tubes will be reduced, and a greater head or pressure will be required
to produce further flow; but, as compression ensues, and the diameters
of the tubes are reduced, the rate of subsidence must become slower;
and, if for total subsidence we take y, and for time x, it is clear that
the resulting curve must be an asymptote to the x axis.

That the above is sound reasoning is borne out by various known
settlements, during long periods of time, where structures have been
founded upon clay or muds. In San Francisco a notable example of
settlement has occurred: A roughly semicircular body of land, one mile
long and half a mile wide, was reclaimed from the bay, and upon this
the business section of the city is built. A sea-wall, made by dumping
rock into a dredged trench, marks the outer boundary. Inside of the sea-
wall the streets have sunk slowly below grade, while adjacent buildings
upon long piles have remained intact; a total subsidence of several feet,
perhaps from 5 to 8 ft., has taken place in the past thirty years. The
subsidence of the sea-wall has been very small in amount, certainly not
greater than one-tenth of the landward subsidence. This appears to
the writer to be a case of steady loading causing the water to percolate
slowly seawards, thus allowing settlement to occur.

S.W. Hoag, Jr., M. Am. Soc. C. E., in testing the soil for the Chelsea
Docks, New York City, where the mud is 180 ft. deep, drove four groups
of four piles each to a penetration of 50 ft., loaded each group with
concrete blocks, and noted the rate of subsidence. The experiment
ended at 51 days, but the curves of subsidence show a total movement
of from 11

2
to 3 in. where the load was 18 tons on a plain pile and

34.6 tons on a lagged pile. The curves mentioned above are markedly
asymptotic to the time axis. These experiments deserve careful study
by any one desiring data regarding the behavior of piles in a mud soil.*

It should not be forgotten that a formula may give correctly the
immediate or present ultimate bearing load of a pile, and yet serious
damage may arise from slow and long-continued settlements; and it is

* Report to John A. Bensel, Engr. in Chief, N. Y. Docks, Nov. 24th, 1902.



34 DISCUSSION: ULTIMATE LOAD ON PILE FOUNDATIONS

the writer’s belief that the attention of the investigator should be turnedMr.
Wagoner. toward the physics of the soil; thus, probably in a rational formula, he

will be able to forecast settlement as well as immediate loads.

John H. Griffith, Assoc. M. Am. Soc. C. E.—Since thisMr. Griffith.

paper was printed, the writer’s attention has been called to the fact
that, in the Annapolis tests, by Mr. Carlin, some of the piles had several
feet of water above the top surface of the earth surrounding them. In
a more general treatment, such a case should be considered, that is,
the boundary relation at the surface should be satisfied for the head
of water existing, instead of zero, as in the case worked out. If the
different strata of soil are considered, this will complicate the problem
still further.

At the time of this criticism, the writer made some approximate
calculations modifying the result for Case 1 which would indicate that
the water pressure would cause an increase in the value given for this
pile of about 10 000 to 12 000 lb.

In a practical theory, it will be necessary to assume a homogeneous
or isotropic soil medium, as has been done heretofore in engineering
studies of earth pressure; also to adhere to the common assumption of
an upper surface free from stress, as this will apply to the greater num-
ber of cases in experience. Otherwise, it will be necessary to increase
the specific weight of the earth a proportionate amount, or actually
modify the stress constituents. All the problems of engineering are
really beyond the realms of analysis in the rigorous aspects, and it is
only by defining the media specifically, or averaging the conditions, that
practical solutions may be effected.

Another point has been raised, regarding the weight of the pile,
or dead load, which did not appear in the calculations. Since it has
been remarked to the writer that the specific weight of yellow pine or
oak when soaked with water may even exceed that of water, so that
such timbers will sometimes sink below the surface, the dead load will
compensate the value given in the first criticism to the amount of several
thousand pounds.

By far the most important factor in an elementary static analysis
is the question of friction and internal angle of friction. The writer be-
lieves that in the main the experimental methods of approach heretofore
in vogue are often more or less unsatisfactory because based on false
premises of operation. Space will only suffice for one illustration in the
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pile theory, and that is the common notion advanced by many engi- Mr. Griffith.

neers that the friction in drawing a pile is equal to that encountered in
driving it. This conclusion, if not absolutely erroneous, is believed to
be not true in general. The argument can only be imperfectly stated, as
follows: When the pile is driven the tubes of stress will start out from
the periphery of the pile and spread over a correspondingly large area,
probably in a conoidal distribution such as has been well described by
Goodrich. Assuming that a cohesive material under pressure will be
subject to the laws of elastic analysis, such a notion would appear to be
confirmed by the well-known tests of Professors Carus-Wilson* on the
beam for surface loading, and of Marston† for the roller problem, if the
principle of equipollence is strained a little from its usual applications.
On the other hand, in withdrawing the pile, such is not the case. One
might indeed conceive of the conoid as inverted, with its base at the
free surface of earth, in which case, for the pulverulent material, the
friction on the periphery would be equated to the weight of the material
under discussion.

The treatment of Patton will illustrate this point in the fact that
he uses equations for minimum and maximum loadings, respectively,

taking
1− sin. φ

1 + sin. φ
for the minimum and

1 + sin. φ

1− sin. φ
for the maximum

lateral factor, according to Rankine. Now, if the pile is being driven,

the
1 + sin. φ

1− sin. φ
is operative while

1− sin. φ

1 + sin. φ
, the reciprocal, holds if for

any reason the pile tends to rise. Accordingly, assuming the coefficient
of friction to be the same, as in the ordinary cases in other fields of
engineering, the total friction on the pile in the case of withdrawal is
less than that in driving. But, for a cohesive soil, it would naturally be
expected that a closer agreement would hold between the two cases.

From the discussion by Mr. Gould on the paper by Mr. Goodrich,
quoted previously, the writer would be led to infer that a considerable
arching action of the ring elements around the pile, which are subject
to hoop compression, exists; and, after the pile moves upward, it en-
counters little resistance, due to the earth friction, by reason of this;
but, whether the friction at the start in withdrawal is equal to that

* Proceedings, Physical Society of London, Vol. XI, 1891, p. 194. Also Sir G. G.
Stokes’ works. A good discussion is in Bovey’s “Mechanics on Surface Loading
of Beams.”

† Transactions, Am. Soc. C. E., Vol. XXXII, pp. 99 and 273.
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in driving, opens a path for discussion by the profession. It is hopedMr. Griffith.

that engineers who have the opportunity to withdraw piles may com-
pare their results with the loading the pile previously carried, or was
supposed to carry.

The whole static problem would appear to be a more general state-
ment of the problem usually ascribed to Cerruti and amplified in its
various phases by Boussinesq, Hertz, and various mathematicians, viz.:

When an elastic cylinder or cone of revolution, initially free from
stress, is inserted in an elastic medium of relatively large extent, the
upper surface of which is flat or nearly so, and normal to the axis,
what are the strains and stresses in both due to vertical loading of the
cylinder?

For the practical purposes of the engineer, he will specialize this
problem to the case of a rigid pile and a pulverulent medium, and
ignore the discontinuity at the base for a first approximation. Professor
Burr, in his “Mechanics of Materials,” has given a derivation of the
equations of equilibrium in cylindrical co-ordinates which will be more
easily understood by the practical engineer than by attempting the
transformation of co-ordinates usually given in the treatises. The tubes
of stress may be considered to start from the surface of the pile with
an angle of inclination to the axis equal to the angle of friction of the
earth on the pile. The principal stress is co-axial with this tube. It
will travel downward and radially until ultimately the integrity of the
tube is destroyed and displacement of the particles takes place at some
distance from the pile, in conformity with the Rankine analysis.

The Rankine equations will satisfy the equations at a distance from
the pile, but cannot be assumed to hold locally on account of the tan-
gential or friction stresses which must be distributed into the earth
around the pile. Hence a correction or parameter must be inserted
in the Rankine stress values, and the resulting values inserted in the
equations of equilibrium. The values of these corrections must be those
which are compatible with the conditions at the ground and at the pile.
The resulting constituents must hold for all values within the region af-
fected by the tangential stresses. What is this region? The writer’s
experiments thus far have shown rather unsatisfactory results. In the
first approximation it will be natural to take the region as limited by
a cone, but this does not seem to give close agreement with fact. The
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matter deserves investigation by those interested in placing the pile on Mr. Griffith.

a rational basis, where it belongs.
The writer has followed Mr. Wagoner’s discussion with interest. His

citation of experiments for getting the specific weight, etc., of a soil in
its ocean bed is quite pertinent at this time.

With regard to the friction angle, the writer is prepared to agree
that the assumption of “uniform values” of this is not rigorous, as has
already been intimated by various investigators, say, Darwin and Wil-
son; but, for the purposes of the practical engineer, it must be assumed
as constant for any particular medium, for reasons of expediency. Such
expressions for the variation of the coefficient of friction, as have been
given heretofore, are too complicated to introduce into the theory in
the early stages of its evolution, but must ultimately find a place in a
rational analysis of earth pressure. Most engineers will be content if
they can approximate to the true status of loading, with a probable
error of, say, 15 or 20% ±, such as one might expect in good bridge
design.

The discussion of time rate of strain variation, involving questions
of subsidence, soil viscosity, etc., enters a comparatively virgin field of
study and experiment. Such investigations, considered in connection
with Slichter’s studies, already cited, will undoubtedly receive an im-
portant place in a final analysis of the pile, from the static point of
view.

Summary.

The practical points which are brought out in this paper are as
follows:

a.—Attempts to get at the loading on a pile by a dynamic theory are
indirection of effort. The direct method is static, and should carry out
the work inaugurated by Patton, Vierendeel, Desmond, and others.
Both methods will co-operate in fixing load limits, and will serve as
check operations.

b.—Their methods, while not rational of form, give an efficient
means of first approximation. Their value may be augmented in ef-
ficiency by abandoning the Rankine ratio altogether and replacing by
a constant, which constant is to be selected on the basis of actual tests
from ultimate loads for similar soils, or from drawing tests when prop-
erly interpreted. Using this constant with the “hydrostatic pressure”
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due to earth, a simple integration gives the real load value empiricallyMr. Griffith.

when multiplied by the coefficient of friction; or, more directly, owing
to the uncertainty of this coefficient, it may be included in the deter-
mination of the constant.

c.—The notion of using the full Rankine pressure on the base is
probably in error, except for short piles and shallow foundations. The
Vierendeel form of neglecting this in comparison with that on the
periphery would seem to be more favorable to fact in a continuous
medium. This does not apply to a discontinuity at the base such as
would be implied by a rock foundation under the pile.

d.—The pile is susceptible to an elastic treatment to a considerable
extent. Engineers should determine the moduli of soils, pulverulent,
plastic, or other, just as in steel or wooden structures. The fact of
average values of moduli may apply as properly as it does in concrete
or wood.

e.—The Rankine theory should ultimately be displaced in favor
of an elastic treatment, because, by reason of strain, viscosity, and
cohesion, it can never fit the facts.

f.—The question of dilatancy should be studied in its relation to
the pile.

g.—Those who are interested in the development of a correct theory
of the pile should preserve the physical data for a static analysis, such
as that of the pile periphery, its slope, and diameters, also the soil data
and stratification. It has been the writer’s experience, in attempting to
correlate figures with facts, that most of this has been rejected in the
dynamic analysis.



LICENSING 39

End of the Project Gutenberg EBook of Transactions of the American Society
of Civil Engineers, vol. LXX, Dec. 1910, by John H. Griffith

*** END OF THIS PROJECT GUTENBERG EBOOK 25222 ***

***** This file should be named 25222-pdf.pdf or 25222-pdf.zip *****
This and all associated files of various formats will be found in:

http://www.gutenberg.org/2/5/2/2/25222/

Produced by Juliet Sutherland, David Wilson and the Online
Distributed Proofreading Team at http://www.pgdp.net

Updated editions will replace the previous one-the old editions
will be renamed.

Creating the works from public domain print editions means that no
one owns a United States copyright in these works, so the Foundation
(and you!) can copy and distribute it in the United States without
permission and without paying copyright royalties. Special rules,
set forth in the General Terms of Use part of this license, apply to
copying and distributing Project Gutenberg-tm electronic works to
protect the PROJECT GUTENBERG-tm concept and trademark. Project
Gutenberg is a registered trademark, and may not be used if you
charge for the eBooks, unless you receive specific permission. If you
do not charge anything for copies of this eBook, complying with the
rules is very easy. You may use this eBook for nearly any purpose
such as creation of derivative works, reports, performances and
research. They may be modified and printed and given away-you may do
practically ANYTHING with public domain eBooks. Redistribution is
subject to the trademark license, especially commercial
redistribution.

*** START: FULL LICENSE ***

THE FULL PROJECT GUTENBERG LICENSE
PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK

To protect the Project Gutenberg-tm mission of promoting the free
distribution of electronic works, by using or distributing this work
(or any other work associated in any way with the phrase "Project
Gutenberg"), you agree to comply with all the terms of the Full Project
Gutenberg-tm License (available with this file or online at
http://gutenberg.org/license).

Section 1. General Terms of Use and Redistributing Project Gutenberg-tm
electronic works

1.A. By reading or using any part of this Project Gutenberg-tm
electronic work, you indicate that you have read, understand, agree to
and accept all the terms of this license and intellectual property
(trademark/copyright) agreement. If you do not agree to abide by all
the terms of this agreement, you must cease using and return or destroy
all copies of Project Gutenberg-tm electronic works in your possession.
If you paid a fee for obtaining a copy of or access to a Project



40 LICENSING

Gutenberg-tm electronic work and you do not agree to be bound by the
terms of this agreement, you may obtain a refund from the person or
entity to whom you paid the fee as set forth in paragraph 1.E.8.

1.B. "Project Gutenberg" is a registered trademark. It may only be
used on or associated in any way with an electronic work by people who
agree to be bound by the terms of this agreement. There are a few
things that you can do with most Project Gutenberg-tm electronic works
even without complying with the full terms of this agreement. See
paragraph 1.C below. There are a lot of things you can do with Project
Gutenberg-tm electronic works if you follow the terms of this agreement
and help preserve free future access to Project Gutenberg-tm electronic
works. See paragraph 1.E below.

1.C. The Project Gutenberg Literary Archive Foundation ("the Foundation"
or PGLAF), owns a compilation copyright in the collection of Project
Gutenberg-tm electronic works. Nearly all the individual works in the
collection are in the public domain in the United States. If an
individual work is in the public domain in the United States and you are
located in the United States, we do not claim a right to prevent you from
copying, distributing, performing, displaying or creating derivative
works based on the work as long as all references to Project Gutenberg
are removed. Of course, we hope that you will support the Project
Gutenberg-tm mission of promoting free access to electronic works by
freely sharing Project Gutenberg-tm works in compliance with the terms of
this agreement for keeping the Project Gutenberg-tm name associated with
the work. You can easily comply with the terms of this agreement by
keeping this work in the same format with its attached full Project
Gutenberg-tm License when you share it without charge with others.

1.D. The copyright laws of the place where you are located also govern
what you can do with this work. Copyright laws in most countries are in
a constant state of change. If you are outside the United States, check
the laws of your country in addition to the terms of this agreement
before downloading, copying, displaying, performing, distributing or
creating derivative works based on this work or any other Project
Gutenberg-tm work. The Foundation makes no representations concerning
the copyright status of any work in any country outside the United
States.

1.E. Unless you have removed all references to Project Gutenberg:

1.E.1. The following sentence, with active links to, or other immediate
access to, the full Project Gutenberg-tm License must appear prominently
whenever any copy of a Project Gutenberg-tm work (any work on which the
phrase "Project Gutenberg" appears, or with which the phrase "Project
Gutenberg" is associated) is accessed, displayed, performed, viewed,
copied or distributed:

This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever. You may copy it, give it away or
re-use it under the terms of the Project Gutenberg License included
with this eBook or online at www.gutenberg.org

1.E.2. If an individual Project Gutenberg-tm electronic work is derived
from the public domain (does not contain a notice indicating that it is
posted with permission of the copyright holder), the work can be copied
and distributed to anyone in the United States without paying any fees



LICENSING 41

or charges. If you are redistributing or providing access to a work
with the phrase "Project Gutenberg" associated with or appearing on the
work, you must comply either with the requirements of paragraphs 1.E.1
through 1.E.7 or obtain permission for the use of the work and the
Project Gutenberg-tm trademark as set forth in paragraphs 1.E.8 or
1.E.9.

1.E.3. If an individual Project Gutenberg-tm electronic work is posted
with the permission of the copyright holder, your use and distribution
must comply with both paragraphs 1.E.1 through 1.E.7 and any additional
terms imposed by the copyright holder. Additional terms will be linked
to the Project Gutenberg-tm License for all works posted with the
permission of the copyright holder found at the beginning of this work.

1.E.4. Do not unlink or detach or remove the full Project Gutenberg-tm
License terms from this work, or any files containing a part of this
work or any other work associated with Project Gutenberg-tm.

1.E.5. Do not copy, display, perform, distribute or redistribute this
electronic work, or any part of this electronic work, without
prominently displaying the sentence set forth in paragraph 1.E.1 with
active links or immediate access to the full terms of the Project
Gutenberg-tm License.

1.E.6. You may convert to and distribute this work in any binary,
compressed, marked up, nonproprietary or proprietary form, including any
word processing or hypertext form. However, if you provide access to or
distribute copies of a Project Gutenberg-tm work in a format other than
"Plain Vanilla ASCII" or other format used in the official version
posted on the official Project Gutenberg-tm web site (www.gutenberg.org),
you must, at no additional cost, fee or expense to the user, provide a
copy, a means of exporting a copy, or a means of obtaining a copy upon
request, of the work in its original "Plain Vanilla ASCII" or other
form. Any alternate format must include the full Project Gutenberg-tm
License as specified in paragraph 1.E.1.

1.E.7. Do not charge a fee for access to, viewing, displaying,
performing, copying or distributing any Project Gutenberg-tm works
unless you comply with paragraph 1.E.8 or 1.E.9.

1.E.8. You may charge a reasonable fee for copies of or providing
access to or distributing Project Gutenberg-tm electronic works provided
that

- You pay a royalty fee of 20% of the gross profits you derive from
the use of Project Gutenberg-tm works calculated using the method
you already use to calculate your applicable taxes. The fee is
owed to the owner of the Project Gutenberg-tm trademark, but he
has agreed to donate royalties under this paragraph to the
Project Gutenberg Literary Archive Foundation. Royalty payments
must be paid within 60 days following each date on which you
prepare (or are legally required to prepare) your periodic tax
returns. Royalty payments should be clearly marked as such and
sent to the Project Gutenberg Literary Archive Foundation at the
address specified in Section 4, "Information about donations to
the Project Gutenberg Literary Archive Foundation."

- You provide a full refund of any money paid by a user who notifies



42 LICENSING

you in writing (or by e-mail) within 30 days of receipt that s/he
does not agree to the terms of the full Project Gutenberg-tm
License. You must require such a user to return or
destroy all copies of the works possessed in a physical medium
and discontinue all use of and all access to other copies of
Project Gutenberg-tm works.

- You provide, in accordance with paragraph 1.F.3, a full refund of any
money paid for a work or a replacement copy, if a defect in the
electronic work is discovered and reported to you within 90 days
of receipt of the work.

- You comply with all other terms of this agreement for free
distribution of Project Gutenberg-tm works.

1.E.9. If you wish to charge a fee or distribute a Project Gutenberg-tm
electronic work or group of works on different terms than are set
forth in this agreement, you must obtain permission in writing from
both the Project Gutenberg Literary Archive Foundation and Michael
Hart, the owner of the Project Gutenberg-tm trademark. Contact the
Foundation as set forth in Section 3 below.

1.F.

1.F.1. Project Gutenberg volunteers and employees expend considerable
effort to identify, do copyright research on, transcribe and proofread
public domain works in creating the Project Gutenberg-tm
collection. Despite these efforts, Project Gutenberg-tm electronic
works, and the medium on which they may be stored, may contain
"Defects," such as, but not limited to, incomplete, inaccurate or
corrupt data, transcription errors, a copyright or other intellectual
property infringement, a defective or damaged disk or other medium, a
computer virus, or computer codes that damage or cannot be read by
your equipment.

1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the "Right
of Replacement or Refund" described in paragraph 1.F.3, the Project
Gutenberg Literary Archive Foundation, the owner of the Project
Gutenberg-tm trademark, and any other party distributing a Project
Gutenberg-tm electronic work under this agreement, disclaim all
liability to you for damages, costs and expenses, including legal
fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT
LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE
PROVIDED IN PARAGRAPH F3. YOU AGREE THAT THE FOUNDATION, THE
TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE
LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR
INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGE.

1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a
defect in this electronic work within 90 days of receiving it, you can
receive a refund of the money (if any) you paid for it by sending a
written explanation to the person you received the work from. If you
received the work on a physical medium, you must return the medium with
your written explanation. The person or entity that provided you with
the defective work may elect to provide a replacement copy in lieu of a
refund. If you received the work electronically, the person or entity
providing it to you may choose to give you a second opportunity to



LICENSING 43

receive the work electronically in lieu of a refund. If the second copy
is also defective, you may demand a refund in writing without further
opportunities to fix the problem.

1.F.4. Except for the limited right of replacement or refund set forth
in paragraph 1.F.3, this work is provided to you ’AS-IS’ WITH NO OTHER
WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTIBILITY OR FITNESS FOR ANY PURPOSE.

1.F.5. Some states do not allow disclaimers of certain implied
warranties or the exclusion or limitation of certain types of damages.
If any disclaimer or limitation set forth in this agreement violates the
law of the state applicable to this agreement, the agreement shall be
interpreted to make the maximum disclaimer or limitation permitted by
the applicable state law. The invalidity or unenforceability of any
provision of this agreement shall not void the remaining provisions.

1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the
trademark owner, any agent or employee of the Foundation, anyone
providing copies of Project Gutenberg-tm electronic works in accordance
with this agreement, and any volunteers associated with the production,
promotion and distribution of Project Gutenberg-tm electronic works,
harmless from all liability, costs and expenses, including legal fees,
that arise directly or indirectly from any of the following which you do
or cause to occur: (a) distribution of this or any Project Gutenberg-tm
work, (b) alteration, modification, or additions or deletions to any
Project Gutenberg-tm work, and (c) any Defect you cause.

Section 2. Information about the Mission of Project Gutenberg-tm

Project Gutenberg-tm is synonymous with the free distribution of
electronic works in formats readable by the widest variety of computers
including obsolete, old, middle-aged and new computers. It exists
because of the efforts of hundreds of volunteers and donations from
people in all walks of life.

Volunteers and financial support to provide volunteers with the
assistance they need, is critical to reaching Project Gutenberg-tm’s
goals and ensuring that the Project Gutenberg-tm collection will
remain freely available for generations to come. In 2001, the Project
Gutenberg Literary Archive Foundation was created to provide a secure
and permanent future for Project Gutenberg-tm and future generations.
To learn more about the Project Gutenberg Literary Archive Foundation
and how your efforts and donations can help, see Sections 3 and 4
and the Foundation web page at http://www.pglaf.org.

Section 3. Information about the Project Gutenberg Literary Archive
Foundation

The Project Gutenberg Literary Archive Foundation is a non profit
501(c)(3) educational corporation organized under the laws of the
state of Mississippi and granted tax exempt status by the Internal
Revenue Service. The Foundation’s EIN or federal tax identification
number is 64-6221541. Its 501(c)(3) letter is posted at
http://pglaf.org/fundraising. Contributions to the Project Gutenberg
Literary Archive Foundation are tax deductible to the full extent



44 LICENSING

permitted by U.S. federal laws and your state’s laws.

The Foundation’s principal office is located at 4557 Melan Dr. S.
Fairbanks, AK, 99712., but its volunteers and employees are scattered
throughout numerous locations. Its business office is located at
809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887, email
business@pglaf.org. Email contact links and up to date contact
information can be found at the Foundation’s web site and official
page at http://pglaf.org

For additional contact information:
Dr. Gregory B. Newby
Chief Executive and Director
gbnewby@pglaf.org

Section 4. Information about Donations to the Project Gutenberg
Literary Archive Foundation

Project Gutenberg-tm depends upon and cannot survive without wide
spread public support and donations to carry out its mission of
increasing the number of public domain and licensed works that can be
freely distributed in machine readable form accessible by the widest
array of equipment including outdated equipment. Many small donations
($1 to $5,000) are particularly important to maintaining tax exempt
status with the IRS.

The Foundation is committed to complying with the laws regulating
charities and charitable donations in all 50 states of the United
States. Compliance requirements are not uniform and it takes a
considerable effort, much paperwork and many fees to meet and keep up
with these requirements. We do not solicit donations in locations
where we have not received written confirmation of compliance. To
SEND DONATIONS or determine the status of compliance for any
particular state visit http://pglaf.org

While we cannot and do not solicit contributions from states where we
have not met the solicitation requirements, we know of no prohibition
against accepting unsolicited donations from donors in such states who
approach us with offers to donate.

International donations are gratefully accepted, but we cannot make
any statements concerning tax treatment of donations received from
outside the United States. U.S. laws alone swamp our small staff.

Please check the Project Gutenberg Web pages for current donation
methods and addresses. Donations are accepted in a number of other
ways including checks, online payments and credit card donations.
To donate, please visit: http://pglaf.org/donate

Section 5. General Information About Project Gutenberg-tm electronic
works.

Professor Michael S. Hart is the originator of the Project Gutenberg-tm
concept of a library of electronic works that could be freely shared
with anyone. For thirty years, he produced and distributed Project
Gutenberg-tm eBooks with only a loose network of volunteer support.



LICENSING 45

Project Gutenberg-tm eBooks are often created from several printed
editions, all of which are confirmed as Public Domain in the U.S.
unless a copyright notice is included. Thus, we do not necessarily
keep eBooks in compliance with any particular paper edition.

Most people start at our Web site which has the main PG search facility:

http://www.gutenberg.org

This Web site includes information about Project Gutenberg-tm,
including how to make donations to the Project Gutenberg Literary
Archive Foundation, how to help produce our new eBooks, and how to
subscribe to our email newsletter to hear about new eBooks.


