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I. Introduction

By common consent a ring R is understood to be an additive
abelian group in which a multiplication is defined, satisfying

(1) (xy)z = x(yz) for all x, y, z in R

and

(2) (x + y)z = xz + yz, z(x + y) = zx + zy

for all x, y, z in R,

while an algebra A over a field F is a ring which is a vector space over
F with

(3) α(xy) = (αx)y = x(αy) for all α in F , x, y in A,

so that the multiplication in A is bilinear. Throughout these notes,
however, the associative law (1) will fail to hold in many of the algebraic
systems encountered. For this reason we shall use the terms “ring” and
“algebra” for more general systems than customary.

We define a ring R to be an additive abelian group with a second
law of composition, multiplication, which satisfies the distributive laws
(2). We define an algebra A over a field F to be a vector space over
F with a bilinear multiplication (that is, a multiplication satisfying
(2) and (3)). We shall use the name associative ring (or associative
algebra) for a ring (or algebra) in which the associative law (1) holds.

In the general literature an algebra (in our sense) is commonly
referred to as a nonassociative algebra in order to emphasize that (1)
is not being assumed. Use of this term does not carry the connotation
that (1) fails to hold, but only that (1) is not assumed to hold. If (1)
is actually not satisfied in an algebra (or ring), we say that the algebra
(or ring) is not associative, rather than nonassociative.

As we shall see in II, a number of basic concepts which are familiar
from the study of associative algebras do not involve associativity in any
way, and so may fruitfully be employed in the study of nonassociative
algebras. For example, we say that two algebras A and A′ over F are
isomorphic in case there is a vector space isomorphism x ↔ x′ between
them with

(4) (xy)′ = x′y′ for all x, y in A.

1



2 INTRODUCTION

Although we shall prove some theorems concerning rings and
infinite-dimensional algebras, we shall for the most part be concerned
with finite-dimensional algebras. If A is an algebra of dimension n over
F , let u1, . . . , un be a basis for A over F . Then the bilinear multiplica-
tion in A is completely determined by the n3 multiplication constants
γijk which appear in the products

(5) uiuj =
n∑

k=1

γijkuk, γijk in F .

We shall call the n2 equations (5) a multiplication table, and shall some-
times have occasion to arrange them in the familiar form of such a table:

u1 . . . uj . . . un

u1
...

...
...

ui . . .
∑

γijkuk . . .
...

...

un
...

The multiplication table for a one-dimensional algebra A over F is
given by u2

1 = γu1(γ = γ111). There are two cases: γ = 0 (from which
it follows that every product xy in A is 0, so that A is called a zero
algebra), and γ 6= 0. In the latter case the element e = γ−1u1 serves as a
basis for A over F , and in the new multiplication table we have e2 = e.
Then α ↔ αe is an isomorphism between F and this one-dimensional
algebra A. We have seen incidentally that any one-dimensional algebra
is associative. There is considerably more variety, however, among the
algebras which can be encountered even for such a low dimension as
two.

Other than associative algebras the best-known examples of alge-
bras are the Lie algebras which arise in the study of Lie groups. A Lie
algebra L over F is an algebra over F in which the multiplication is
anticommutative, that is,

(6) x2 = 0 (implying xy = −yx),

and the Jacobi identity

(7) (xy)z + (yz)x + (zx)y = 0 for all x, y, z in L
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is satisfied. If A is any associative algebra over F , then the commutator

(8) [x, y] = xy − yx

satisfies

(6′) [x, x] = 0

and

(7′)
[
[x, y], z

]
+
[
[y, z], x

]
+
[
[z, x], y

]
= 0.

Thus the algebra A− obtained by defining a new multiplication (8) in
the same vector space as A is a Lie algebra over F . Also any subspace
of A which is closed under commutation (8) gives a subalgebra of A−,
hence a Lie algebra over F . For example, if A is the associative algebra
of all n × n matrices, then the set L of all skew-symmetric matrices
in A is a Lie algebra of dimension 1

2
n(n− 1). The Birkhoff-Witt theo-

rem states that any Lie algebra L is isomorphic to a subalgebra of an
(infinite-dimensional) algebra A− where A is associative. In the general
literature the notation [x, y] (without regard to (8)) is frequently used,
instead of xy, to denote the product in an arbitrary Lie algebra.

In these notes we shall not make any systematic study of Lie al-
gebras. A number of such accounts exist (principally for characteristic
0, where most of the known results lie). Instead we shall be concerned
upon occasion with relationships between Lie algebras and other non-
associative algebras which arise through such mechanisms as the deriva-
tion algebra. Let A be any algebra over F . By a derivation of A is meant
a linear operator D on A satisfying

(9) (xy)D = (xD)y + x(yD) for all x, y in A.

The set D(A) of all derivations of A is a subspace of the associative
algebra E of all linear operators on A. Since the commutator [D, D′]
of two derivations D, D′ is a derivation of A, D(A) is a subalgebra of
E−; that is, D(A) is a Lie algebra, called the derivation algebra of A.

Just as one can introduce the commutator (8) as a new product
to obtain a Lie algebra A− from an associative algebra A, so one can
introduce a symmetrized product

(10) x ∗ y = xy + yx

in an associative algebra A to obtain a new algebra over F where the
vector space operations coincide with those in A but where multipli-
cation is defined by the commutative product x ∗ y in (10). If one is
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content to restrict attention to fields F of characteristic not two (as we
shall be in many places in these notes) there is a certain advantage in
writing

(10′) x · y = 1
2
(xy + yx)

to obtain an algebra A+ from an associative algebra A by defining
products by (10′) in the same vector space as A. For A+ is isomorphic
under the mapping a → 1

2
a to the algebra in which products are defined

by (10). At the same time powers of any element x in A+ coincide with
those in A: clearly x · x = x2, whence it is easy to see by induction on
n that x · x · · · · · x (n factors) = (x · · · · · x) · (x · · · · · x) = xi · xn−i =
1
2
(xixn−i + xn−ixi) = xn.

If A is associative, then the multiplication in A+ is not only com-
mutative but also satisfies the identity

(11) (x · y) · (x · x) = x · [y · (x · x)] for all x, y in A+.

A (commutative) Jordan algebra J is an algebra over a field F in which
products are commutative:

(12) xy = yx for all x, y in J,

and satisfy the Jordan identity

(11′) (xy)x2 = x(yx2) for all x, y in J.

Thus, if A is associative, then A+ is a Jordan algebra. So is any sub-
algebra of A+, that is, any subspace of A which is closed under the
symmetrized product (10′) and in which (10′) is used as a new multi-
plication (for example, the set of all n × n symmetric matrices). An
algebra J over F is called a special Jordan algebra in case J is isomor-
phic to a subalgebra of A+ for some associative A. We shall see that
not all Jordan algebras are special.

Jordan algebras were introduced in the early 1930’s by a physi-
cist, P. Jordan, in an attempt to generalize the formalism of quantum
mechanics. Little appears to have resulted in this direction, but unan-
ticipated relationships between these algebras and Lie groups and the
foundations of geometry have been discovered.
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The study of Jordan algebras which are not special depends upon
knowledge of a class of algebras which are more general, but in a certain
sense only slightly more general, than associative algebras. These are
the alternative algebras A defined by the identities

(13) x2y = x(xy) for all x, y in A

and

(14) yx2 = (yx)x for all x, y in A,

known respectively as the left and right alternative laws. Clearly any
associative algebra is alternative. The class of 8-dimensional Cayley
algebras (or Cayley-Dickson algebras, the prototype having been dis-
covered in 1845 by Cayley and later generalized by Dickson) is, as we
shall see, an important class of alternative algebras which are not as-
sociative.

To date these are the algebras (Lie, Jordan and alternative) about
which most is known. Numerous generalizations have recently been
made, usually by studying classes of algebras defined by weaker iden-
tities. We shall see in II some things which can be proved about com-
pletely arbitrary algebras.



II. Arbitrary Nonassociative Algebras

Let A be an algebra over a field F . (The reader may make the
appropriate modifications for a ring R.) The definitions of the terms
subalgebra, left ideal, right ideal, (two-sided) ideal I, homomorphism,
kernel of a homomorphism, residue class algebra A/I (difference algebra
A−I), anti-isomorphism, which are familiar from a study of associative
algebras, do not involve associativity of multiplication and are thus
immediately applicable to algebras in general. So is the notation BC

for the subspace of A spanned by all products bc with b in B, c in C

(B, C being arbitrary nonempty subsets of A); here we must of course
distinguish between (AB)C and A(BC), etc.

We have the fundamental theorem of homomorphism for algebras :
If I is an ideal of A, then A/I is a homomorphic image of A under the
natural homomorphism

(1) a → a = a + I, a in A, a + I in A/I.

Conversely, if A′ is a homomorphic image of A (under the homomor-
phism

(2) a → a′, a in A, a′ in A′),

then A′ is isomorphic to A/I where I is the kernel of the homomor-
phism.

If S′ is a subalgebra (or ideal) of a homomorphic image A′ of A,
then the complete inverse image of S′ under the homomorphism (2)—
that is, the set S = {s ∈ A | s′ ∈ S′}—is a subalgebra (or ideal) of A

which contains the kernel I of (2). If a class of algebras is defined by
identities (as, for example, Lie, Jordan or alternative algebras), then
any subalgebra or any homomorphic image belongs to the same class.

We have the customary isomorphism theorems:

(i) If I1 and I2 are ideals of A such that I1 contains I2, then
(A/I2)/(I1/I2) and A/I1 are isomorphic.

(ii) If I is an ideal of A and S is a subalgebra of A, then I ∩S

is an ideal of S, and (I + S)/I and S/(I ∩S) are isomorphic.

6
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Suppose that B and C are ideals of an algebra A, and that as a
vector space A is the direct sum of B and C (A = B + C, B ∩ C = 0).
Then A is called the direct sum A = B ⊕ C of B and C as algebras.
The vector space properties insure that in a direct sum A = B⊕ C the
components b, c of a = b + c (b in B, c in C) are uniquely determined,
and that addition and multiplication by scalars are performed compo-
nentwise. It is the assumption that B and C are ideals in A = B ⊕ C

that gives componentwise multiplication as well:

(3) (b1 + c1)(b2 + c2) = b1b2 + c1c2, bi in B, ci in C.

For b1c2 is in both B and C, hence in B∩ C = 0. Similarly c1b2 = 0, so
(3) holds, (Although ⊕ is commonly used to denote vector space direct
sum, it has been reserved in these notes for direct sum of ideals; where
appropriate the notation ⊥ has been used for orthogonal direct sum
relative to a symmetric bilinear form.)

Given any two algebras B, C over a field F , one can construct an
algebra A over F such that A is the direct sum A = B′ ⊕ C′ of ideals
B′, C′ which are isomorphic respectively to B, C. The construction of
A is familiar: the elements of A are the ordered pairs (b, c) with b in
B, c in C; addition, multiplication by scalars, and multiplication are
defined componentwise:

(b1, c1) + (b2, c2) = (b1 + b2, c1 + c2),

(4) α(b, c) = (αb, αc),

(b1, c1)(b2, c2) = (b1c1, b2c2).

Then A is an algebra over F , the sets B′ of all pairs (b, 0) with b in B

and C′ of all pairs (0, c) with c in C are ideals of A isomorphic respec-
tively to B and C, and A = B′ ⊕ C′. By the customary identification
of B with B′, C with C′, we can then write A = B⊕ C, the direct sum
of B and C as algebras.

As in the case of vector spaces, the notion of direct sum extends to
an arbitrary (indexed) set of summands. In these notes we shall have
occasion to use only finite direct sums A = B1 ⊕B2 ⊕ · · · ⊕Bt. Here
A is the direct sum of the vector spaces Bi, and multiplication in A is
given by

(5) (b1 + b2 + · · ·+ bt)(c1 + c2 + · · ·+ ct) = b1c1 + b2c2 + · · ·+ btct
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for bi, ci in Bi. The Bi are ideals of A. Note that (in the case of a
vector space direct sum) the latter statement is equivalent to the fact
that the Bi are subalgebras of A such that

(6) BiBj = 0 for i 6= j.

An element e (or f) in an algebra A over F is called a left (or
right) identity (sometimes unity element) in case ea = a (or af = a)
for all a in A. If A contains both a left identity e and a right identity
f , then e = f (= ef) is a (two-sided) identity 1. If A does not contain
an identity element 1, there is a standard construction for obtaining an
algebra A1 which does contain 1, such that A1 contains (an isomorphic
copy of) A as an ideal, and such that A1/A has dimension 1 over F .
We take A1 to be the set of all ordered pairs (α, a) with α in F , a in
A; addition and multiplication by scalars are defined componentwise;
multiplication is defined by

(7) (α, a)(β, b) = (αβ, βa + αb + ab), α, β in F , a, b in A.

Then A1 is an algebra over F with identity element 1 = (1, 0). The
set A′ of all pairs (0, a) in A1 with a in A is an ideal of A1 which is
isomorphic to A. As a vector space A1 is the direct sum of A′ and
the 1-dimensional space F1 = {α1 | α in F}. Identifying A′ with its
isomorphic image A, we can write every element of A1 uniquely in the
form α1 + a with α in F , a in A, in which case the multiplication (7)
becomes

(7′) (α1 + a)(β1 + b) = (αβ)1 + (βa + αb + ab).

We say that we have adjoined a unity element to A to obtain A1. (If
A is associative, this familiar construction yields an associative algebra
A1 with 1. A similar statement is readily verifiable for (commutative)
Jordan algebras and for alternative algebras. It is of course not true
for Lie algebras, since 12 = 1 6= 0.)

Let B and A be algebras over a field F . The Kronecker product
B⊗F A (written B⊗A if there is no ambiguity) is the tensor product
B⊗F A of the vector spaces B, A (so that all elements are sums

∑
b⊗a,

b in B, a in A, multiplication being defined by distributivity and

(8) (b1 ⊗ a1)(b2 ⊗ a2) = (b1b2)⊗ (a1a2), bi in B, ai in A.
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If B contains 1, then the set of all 1 ⊗ a in B ⊗ A is a subalgebra of
B⊗A which is isomorphic to A, and which we can identify with A (sim-
ilarly, if A contains 1, then B⊗A contains B as a subalgebra). If B and
A are finite-dimensional over F , then dim(B⊗ A) = (dim B)(dim A).

We shall on numerous occasions be concerned with the case where
B is taken to be a field (an arbitrary extension K of F ). Then K does
contain 1, so AK = K ⊗F A contains A (in the sense of isomorphism)
as a subalgebra over F . Moreover, AK is readily seen to be an algebra
over K, which is called the scalar extension of A to an algebra over
K. The properties of a tensor product insure that any basis for A over
F is a basis for AK over K. In case A is finite-dimensional over F ,
this gives an easy representation for the elements of AK . Let u1, . . . , un

be any basis for A over F . Then the elements of AK are the linear
combinations

(9)
∑

αiui (=
∑

αi ⊗ ui), αi in K,

where the coefficients αi in (9) are uniquely determined. Addition and
multiplication by scalars are performed componentwise. For multipli-
cation in AK we use bilinearity and the multiplication table

(10) uiuj =
∑

γijk uk, γijk in F .

The elements of A are obtained by restricting the αi in (9) to elements
of F .

For finite-dimensional A, the scalar extension AK (K an arbitrary
extension of F ) may be defined in a non-invariant way (without recourse
to tensor products) by use of a basis as above. Let u1, . . . , un be any
basis for A over F ; multiplication in A is given by the multiplication
table (10). Let AK be an n-dimensional algebra over K with the same
multiplication table (this is valid since the γijk, being in F , are in
K). What remains to be verified is that a different choice of basis for A

over F would yield an algebra isomorphic (over K) to this one. (A non-
invariant definition of the Kronecker product of two finite-dimensional
algebras A, B may similarly be given.)

For the classes of algebras mentioned in the Introduction (Jordan
algebras of characteristic 6= 2, and Lie and alternative algebras of arbi-
trary characteristic), one may verify that algebras remain in the same
class under scalar extension—a property which is not shared by classes
of algebras defined by more general identities (as, for example, in V).
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Just as the commutator [x, y] = xy − yx measures commutativity
(and lack of it) in an algebra A, the associator

(11) (x, y, z) = (xy)z − x(yz)

of any three elements may be introduced as a measure of associativity
(and lack of it) in A. Thus the definitions of alternative and Jordan
algebras may be written as

(x, x, y) = (y, x, x) = 0 for all x, y in A

and

[x, y] = (x, y, x2) = 0 for all x, y in A.

Note that the associator (x, y, z) is linear in each argument. One iden-
tity which is sometimes useful and which holds in any algebra A is

(12) a(x, y, z) + (a, x, y)z = (ax, y, z)− (a, xy, z) + (a, x, yz)

for all a, x, y, z in A.

The nucleus G of an algebra A is the set of elements g in A which
associate with every pair of elements x, y in A in the sense that

(13) (g, x, y) = (x, g, y) = (x, y, g) = 0 for all x, y in A.

It is easy to verify that G is an associative subalgebra of A. G is
a subspace by the linearity of the associator in each argument, and
(g1g2, x, y) = g1(g2, x, y) + (g1, g2, x)y + (g1, g2x, y)− (g1, g2, xy) = 0 by
(13), etc.

The center C of A is the set of all c in A which commute and
associate with all elements; that is, the set of all c in the nucleus G

with the additional property that

(14) xc = cx for all x in A.

This clearly generalizes the familiar notion of the center of an associa-
tive algebra. Note that C is a commutative associative subalgebra of
A.

Let a be any element of an algebra A over F . The right multipli-
cation Ra of A which is determined by a is defined by

(15) Ra : x → xa for all x in A.
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Clearly Ra is a linear operator on A. Also the set R(A) of all right
multiplications of A is a subspace of the associative algebra E of all
linear operators on A, since a → Ra is a linear mapping of A into E.
(In the familiar case of an associative algebra, R(A) is a subalgebra of
E, but this is not true in general.) Similarly the left multiplication La

defined by

(16) La : x → ax for all x in A

is a linear operator on A, the mapping a → La is linear, and the set
L(A) of all left multiplications of A is a subspace of E.

We denote by M(A), or simply M, the enveloping algebra of
R(A) ∪ L(A); that is, the (associative) subalgebra of E generated by
right and left multiplications of A. M(A) is the intersection of all
subalgebras of E which contain both R(A) and L(A). The elements
of M(A) are of the form

∑
S1 · · ·Sn where Si is either a right or left

multiplication of A. We call the associative algebra M = M(A) the
multiplication algebra of A.

It is sometimes useful to have a notation for the enveloping algebra
of the right and left multiplications (of A) which correspond to the
elements of any subset B of A; we shall write B∗ for this subalgebra of
M(A). That is, B∗ is the set of all

∑
S1 · · ·Sn, where Si is either Rbi

,
the right multiplication of A determined by bi in B, or Lbi

. Clearly
A∗ = M(A), but note the difference between B∗ and M(B) in case B

is a proper subalgebra of A—they are associative algebras of operators
on different spaces (A and B respectively).

An algebra A over F is called simple in case 0 and A itself are
the only ideals of A, and A is not a zero algebra (equivalently, in the
presence of the first assumption, A is not the zero algebra of dimension
1). Since an ideal of A is an invariant subspace under M = M(A),
and conversely, it follows that A is simple if and only if M 6= 0 is an
irreducible set of linear operators on A. Since A2 (= AA) is an ideal of
A, we have A2 = A in case A is simple.

An algebra A over F is a division algebra in case A 6= 0 and the
equations

(17) ax = b, ya = b (a 6= 0, b in A)

have unique solutions x, y in A; this is equivalent to saying that, for
any a 6= 0 in A, La and Ra have inverses L−1

a and R−1
a . Any division
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algebra is simple. For, if I 6= 0 is merely a left ideal of A, there is an
element a 6= 0 in I and A ⊆ Aa ⊆ I by (17), or I = A; also clearly
A2 6= 0. (Any associative division algebra A has an identity 1, since
(17) implies that the non-zero elements form a multiplicative group. In
general, a division algebra need not contain an identity 1.) If A has
finite dimension n ≥ 1 over F , then A is a division algebra if and only
if A is without zero divisors (x 6= 0 and y 6= 0 in A imply xy 6= 0),
inasmuch as the finite-dimensionality insures that La (and similarly
Ra), being (1–1) for a 6= 0, has an inverse.

In order to make the observation that any simple ring is actually an
algebra, so the study of simple rings reduces to that of (possibly infinite-
dimensional) simple algebras, we take for granted that the appropriate
definitions for rings are apparent and we digress to consider any sim-
ple ring R. The (associative) multiplication ring M = M(R) 6= 0 is
irreducible as a ring of endomorphisms of R. Thus by Schur’s Lemma
the centralizer C′ of M in the ring E of all endomorphisms of R is an
associative division ring. Since M is generated by left and right multi-
plications of R, C′ consists of those endomorphisms T in E satisfying
RyT = TRy, LxT = TLx, or

(18) (xy)T = (xT )y = x(yT ) for all x, y in R.

Hence S, T in C′ imply (xy)ST = ((xS)y) T = (xS)(yT ) = (x(yS)) T =
(xT )(yS). Interchanging S and T , we have (xy)ST = (xy)TS, so that
zST = zTS for all z in R2 = R. That is, ST = TS for all S, T in C′;
C′ is a field which we call the multiplication centralizer of R. Now the
simple ring R may be regarded in a natural way as an algebra over the
field C′. Denote T in C′ by α, and write αx = xT for any x in R. Then
R is a (left) vector space over C′. Also (18) gives the defining relations
α(xy) = (αx)y = x(αy) for an algebra over C′. As an algebra over C′

(or any subfield F of C′), R is simple since any ideal of R as an algebra
is a priori an ideal of R as a ring.

Moreover, M is a dense ring of linear transformations on R over
C′ (Jacobson, Lectures in Abstract Algebra, vol. II, p. 274), so we have
proved

Theorem 1. Let R be a simple ring, and M be its multiplication
ring. Then the multiplication centralizer C′ of M is a field, and R may
be regarded as a simple algebra over any subfield F of C′. M is a dense
ring of linear transformations on R over C′.
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Returning now to any simple algebra A over F , we recall that the
multiplication algebra M(A) is irreducible as a set of linear operators
on the vector space A over F . But (Jacobson, ibid) this means that
M(A) is irreducible as a set of endomorphisms of the additive group of
A, so that A is a simple ring. That is, the notions of simple algebra and
simple ring coincide, and Theorem 1 may be paraphrased for algebras
as

Theorem 1′. Let A be a simple algebra over F , and M be its
multiplication algebra. Then the multiplication centralizer C′ of M is
a field (containing F ), and A may be regarded as a simple algebra over
C′. M is a dense ring of linear transformations on A over C′.

Suppose that A has finite dimension n over F . Then E has dimen-
sion n2 over F , and its subalgebra C′ has finite dimension over F . That
is, the field C′ is a finite extension of F of degree r = (C′ : F ) over F .
Then n = mr, and A has dimension m over C′. Since M is a dense
ring of linear transformations on (the finite-dimensional vector space)
A over C′, M is the set of all linear operators on A over C′. Hence C′ is
contained in M in the finite-dimensional case. That is, C′ is the center
of M and is called the multiplication center of A.

Corollary. Let A be a simple algebra of finite dimension over F ,
and M be its multiplication algebra. Then the center C′ of M is a field,
a finite extension of F . A may be regarded as a simple algebra over C′.
M is the algebra of all linear operators on A over C′.

An algebra A over F is called central simple in case AK is simple
for every extension K of F . Every central simple algebra is simple (take
K = F ).

We omit the proof of the fact that any simple algebra A (of arbi-
trary dimension), regarded as an algebra over its multiplication cen-
tralizer C′ (so that C′ = F ) is central simple. The idea of the proof
is to show that, for any extension K of F , the multiplication algebra
M(AK) is a dense ring of linear transformations on AK over K, and
hence is an irreducible set of linear operators.

Theorem 2. The center C of any simple algebra A over F is either
0 or a field. In the latter case A contains 1, the multiplication centralizer
C′ = C∗ = {Rc | c ∈ C}, and A is a central simple algebra over C.
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Proof: Note that c is in the center of any algebra A if and only if
Rc = Lc and [Lc, Ry] = RcRy − Rcy = RyRc − Ryc = 0 for all y in A

or, more compactly,

(19) Rc = Lc, RcRy = RyRc = Rcy for all y in A.

Hence (18) implies that

(20) cT is in C for all c in C, T in C′.

For (18) may be written as

(18′) RyT = TRy = RyT for all y in A

or, equivalently, as

(18′′) LxT = LxT = TLx for all x in A.

Then (18′) and (18′′) imply RcT = TRc = TLc = LcT , together with
RcT Ry = RcTRy = RcRyT = Rc(yT ) = R(cT )y and RyRcT = RyRcT =
RcRyT = RcTRy (= R(cT )y), That is, (20) holds. Note also that (19)
implies

(21) LxRc = RcLx for all c in C, x in A.

Since Rc1Rc2 = Rc1c2 (ci in C) by (19), the subalgebra C∗ of M(A)
is just C∗ = {Rc | c ∈ C}, and the mapping c → Rc is a homomorphism
of C onto C∗. Also (19) and (21) imply that Rc commutes with every
element of M so that C∗ ⊆ C′. Moreover, C∗ is an ideal of the (commu-
tative) field C′ since (18′) and (20) imply that TRc = RcT is in C∗ for
all T in C′, c in C. Hence either C∗ = 0 or C∗ = C ′.

Now C∗ = 0 implies Rc = 0 for all c in C; hence C = 0. For, if there
is c 6= 0 in C, then I = Fc 6= 0 is an ideal of A since IA = AI = 0.
Then I = A, A2 = 0, a contradiction.

In the remaining case C∗ = C′, the identity operator 1A on A is in
C′ = C∗. Hence there is an element e in C such that Re = Le = 1A, or
ae = ea = a for all a in A; A has a unity element 1 = e. Then c → Rc

is an isomorphism between C and the field C′. A is an algebra over the
field C, and as such is central simple.
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For any algebra A over F , one obtains a derived series of subalge-
bras A(1) ⊇ A(2) ⊇ A(3) ⊇ · · · by defining A(1) = A, A(i+1) = (A(i))2. A

is called solvable in case A(r) = 0 for some integer r.

Proposition 1. If an algebra A contains a solvable ideal I, and if
A = A/I is solvable, then A is solvable.

Proof: Since (1) is a homomorphism, it follows that A2 = A2 and
that A(i) = A(i). Then A(r) = 0 implies A(r) = 0, or A(r) ⊆ I. But
I(s) = 0 for some s, so A(r+s) = (A(r))(s) ⊆ I(s) = 0. Hence A is
solvable.

Proposition 2. If B and C are solvable ideals of an algebra A,
then B + C is a solvable ideal of A. Hence, if A is finite-dimensional,
A has a unique maximal solvable ideal N. Moreover, the only solvable
ideal of A/N is 0.

Proof: B+C is an ideal because B and C are ideals. By the second
isomorphism theorem (B + C)/C ∼= B/(B ∩ C). But B/(B ∩ C) is a
homomorphic image of the solvable algebra B, and is therefore clearly
solvable. Then B + C is solvable by Proposition 1. It follows that,
if A is finite-dimensional, the solvable ideal of maximum dimension is
unique (and contains every solvable ideal of A). Let N be this maximal
solvable ideal, and G be any solvable ideal of A = A/N. The complete
inverse image G of G under the natural homomorphism of A onto A is
an ideal of A such that G/N = G. Then G is solvable by Proposition 1,
so G ⊆ N. Hence G/N = G = 0.

An algebra A is called nilpotent in case there exists an integer t
such that any product z1z2 · · · zt of t elements in A, no matter how
associated, is 0. This clearly generalizes the concept of nilpotence as
defined for associative algebras. Also any nilpotent algebra is solvable.

Theorem 3. An ideal B of an algebra A is nilpotent if and only
if the (associative) subalgebra B∗ of M(A) is nilpotent.

Proof: Suppose that every product of t elements of B, no matter
how associated, is 0. Then the same is true for any product of more
than t elements of B. Let T = T1 · · ·Tt be any product of t elements
of B∗. Then T is a sum of terms each of which is a product of at
least t linear operators Si, each Si being either Lbi

or Rbi
(bi in B).
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Since B is an ideal of A, xS1 is in B for every x in A. Hence xT
is a sum of terms, each of which is a product of at least t elements
in B. Hence xT = 0 for all x in A, or T = 0, B∗ is nilpotent. For
the converse we need only that B is a subalgebra of A. We show by
induction on n that any product of at least 2n elements in B, no matter
how associated, is of the form bS1 · · ·Sn with b in B, Si in B∗. For
n = 1, we take any product of at least 2 elements in B. There is
a final multiplication which is performed. Since B is a subalgebra,
each of the two factors is in B: bb1 = bRb1 = bS1. Similarly in any
product of at least 2n+1 elements of B, no matter how associated,
there is a final multiplication which is performed. At least one of the
two factors is a product of at least 2n elements of B, while the other
factor b′ is in B. Hence by the assumption of the induction we have
either b′(bS1 · · ·Sn) = bS1 · · ·SnLb′ = bS1 · · ·Sn+1 or (bS1 · · ·Sn)b′ =
bS1 · · ·SnRb′ = bS1 · · ·Sn+1, as desired. Hence, if any product S1 · · ·St

of t elements in B∗ is 0, any product of 2t elements of B, no matter
how associated, is 0. That is, B is nilpotent.



III. Alternative Algebras

As indicated in the Introduction, an alternative algebra A over F
is an algebra in which

(1) x2y = x(xy) for all x, y in A

and

(2) yx2 = (yx)x for all x, y in A.

In terms of associators, (1) and (2) are equivalent to

(1′) (x, x, y) = 0 for all x, y in A

and

(2′) (y, x, x) = 0 for all x, y in A.

In terms of left and right multiplications, (1) and (2) are equivalent to

(1′′) Lx2 = Lx
2 for all x in A

and

(2′′) Rx2 = Rx
2 for all x in A.

The associator (x1, x2, x3) “alternates” in the sense that, for any
permutation σ of 1, 2, 3, we have (x1σ, x2σ, x3σ) = (sgn σ)(x1, x2, x3).
To establish this, it is sufficient to prove

(3) (x, y, z) = −(y, x, z) for all x, y, z in A

and

(4) (x, y, z) = (z, x, y) for all x, y, z in A.

Now (1′) implies that (x + y, x + y, z) = (x, x, z) + (x, y, z) + (y, x, z) +
(y, y, z) = (x, y, z) + (y, x, z) = 0, implying (3). Similarly (2′) implies
(x, y, z) = −(x, z, y) which gives (x, z, y) = (y, x, z). Interchanging y
and z, we have (4). The fact that the associator alternates is equivalent
to

(5)
RxRy −Rxy = Lxy − LyLx = LyRx −RxLy =

LxLy − Lyx = RyLx − LxRy = Ryx −RyRx

17
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for all x, y in A. It follows from (1′′), (2′′) and (5) that any scalar
extension AK of an alternative algebra A is alternative.

Now (3) and (2′) imply

(6) (x, y, x) = 0 for all x, y in A;

that is,

(6′) (xy)x = x(yx) for all x, y in A,

or

(6′′) LxRx = RxLx for all x in A.

Identity (6′) is called the flexible law. All of the algebras mentioned
in the Introduction (Lie, Jordan and alternative) are flexible. The
linearized form of the flexible law is

(6′′′) (x, y, z) + (z, y, x) = 0 for all x, y, z in A.

We shall have occasion to use the Moufang identities

(7) (xax)y = x [a(xy)] ,

(8) y(xax) = [(yx)a] x,

(9) (xy)(ax) = x(ya)x

for all x, y, a in an alternative algebra A (where we may write xax un-
ambiguously by (6′)). Now (xax)y−x [a(xy)] = (xa, x, y)+(x, a, xy) =
(−x, xa, y)− (x, xy, a) = − [x(xa)] y+x [(xa)y]− [x(xy)] a+x [(xy)a] =
−(x2a)y − (x2y)a + x [(xa)y + (xy)a] = −(x2, a, y) − (x2, y, a) −
x2(ay) − x2(ya) + x [(xa)y + (xy)a] = x [−x(ay) − x(ya) + (xa)y +
(xy)a] = x [(x, a, y) + (x, y, a)] = 0, establishing (7). Identity (8) is the
reciprocal relationship (obtained by passing to the anti-isomorphic al-
gebra, which is alternative since the defining identities are reciprocal).
Finally (7) implies (xy)(ax)−x(ya)x = (x, y, ax)+x [y(ax)− (ya)x] =
−(x, ax, y)−x(y, a, x) = −(xax)y +x [(ax)y − (y, a, x)] = −x [a(xy) −
(ax)y + (y, a, x)] = −x [−(a, x, y) + (y, a, x)] = 0, or (9) holds.

Theorem of Artin. The subalgebra generated by any two ele-
ments x, y of an alternative algebra A is associative.

Proof: Define powers of a single element x recursively by x1 = x,
xi+1 = xxi. Show first that the subalgebra F [x] generated by a single
element x is associative by proving

(10) xixj = xi+j for all x in A (i, j = 1, 2, 3, . . . ).
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We prove this by induction on i, but shall require the case j = 1:

(11) xix = xxi for all x in A (i = 1, 2, . . . ).

Proving (11) by induction, we have xi+1x = (xxi)x = x(xix) =
x(xxi) = xxi+1 by flexibility and the assumption of the induction. We
have (10) for i = 1, 2 by definition and (1). Assuming (10) for i ≥ 2, we
have xi+1xj = (xxi)xj = [x(xxi−1)] xj = [x(xi−1x)] xj = x [xi−1(xxj)] =
x(xi−1xj+1) = xxi+j = xi+j+1 by (11), (7) and the assumption of the
induction. Hence F [x] is associative.

Next we prove that

(12) xi(xjy) = xi+jy for all x, y in A (i, j = 1, 2, 3, . . . ).

First we prove the case j = 1:

(13) xi(xy) = xi+1y for all x, y in A (i = 1, 2, 3, . . . ).

The case i = 1 of (13) is given by (1); the case i = 2 is
x2(xy) = x [x(xy)] = (xxx)y = x3y by (1) and (7). Then for i ≥ 2,
write the assumption (13) of the induction with xy for y and i for
i + 1: xi−1 [x(xy)] = xi(xy). Then xi+1(xy) = (xxi−1x)(xy) =
x [xi−1 {x(xy)}] = x [xi(xy)] = (xxix)y = xi+2y by (7). We have
proved the case j = 1 of (12). Then with xy written for y in (12), the
assumption of the induction is xi+j(xy) = xi [xj(xy)]. It follows that
xi(xj+1y) = xi [xj(xy)] = xi+j(xy) = xi+j+1y by (13). Now (12) holds
identically in y. Hence

(14) xi(xjyk) = (xixj)yk.

Reciprocally

(15) (ykxj)xi = yk(xjxi).

Since the distributive law holds in A, it is sufficient now to show that

(16) (xiyk)xj = xi(ykxj)

in order to show that the subalgebra generated by x, y is associative.
But (14) implies (xi, yk, xj) = −(xi, xj, yk) = 0.
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An algebra A over F is called power-associative in case the subal-
gebra F [x] of A generated by any element x in A is associative. Any
alternative algebra is power-associative; the Theorem of Artin also im-
plies

(17) Rx
j = Rxj , Lx

j = Lxj for all x in A.

An element x in a power-associative algebra A is called nilpotent in
case there is an integer r such that xr = 0. An algebra (ideal) consisting
only of nilpotent elements is called a nilalgebra (nilideal).

Theorem 4. Any alternative nilalgebra A of finite dimension over
F is nilpotent.

Proof: Any subalgebra B of A is generated by a finite number of
elements (for example, the elements in a basis for B over F ). We prove
by induction on the number of generators of B that B∗ is nilpotent for
all subalgebras B; hence, in particular, for B = A. If B is generated by
one element x, then by (6′′) and (17) any T in B∗ is a linear combination
of operators of the form

(18) Rx
j1 , Lx

j2 , Rx
j3Lx

j4 for ji ≥ 1.

Then, if xj = 0, we have T 2j−1 = 0, B∗ is nilpotent. Hence, by the
assumption of the induction, we may take a maximal proper subalgebra
B of A and know that B∗ is nilpotent. But then there exists an element
x not in B such that

(19) xB∗ ⊆ B.

For B∗r = 0 implies that AB∗r = 0 ⊆ B, and there exists a smallest
integer m ≥ 1 such that AB∗m ⊆ B. If m = 1, take x in A but not in
B; if m > 1, take x in AB∗m−1 but not in B. Then (19) is satisfied.
Since B is maximal, the subalgebra generated by B and x is A itself.
It follows from (19) that A = B + F [x] so that M = A∗ = (B + Fx)∗.
Put y = b in (5) for any b in B. Then (19) implies that

(20)
RxRb = Rb1 −RbRx, RxLb = LbRx + RbRx −Rb2 ,

LxRb = RbLx + LbLx − Lb3 , LxLb = Lb1 − LbLx

for bi in B. Equations (20) show that, in each product of right and
left multiplications in B∗ and (Fx)∗, the multiplication Rx or Lx may
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be systematically passed from the left to the right of Rb or Lb in a
fashion which, although it may change signs and introduce new terms,
preserves the number of factors from B∗ and does not increase the
number of factors from (Fx)∗. Hence any T in A∗ = (B + Fx)∗ may
be written as a linear combination of terms of the form (18) and others
of the form

B1, B2Rx
m1 , B3Lx

m2 , B4Rx
m3Lx

m4

for Bi in B∗, mi ≥ 1. Then if B∗r = 0 and xj = 0, we have T r(2j−1) = 0;
for every term in the expansion of T r(2j−1) contains either an uninter-
rupted sequence of at least 2j−1 factors from (Fx)∗ or at least r factors
Bi. In the latter case the Rx or Lx may be systematically passed from
the left to the right of Bi (as above) preserving the number of fac-
tors from B∗, resulting in a sum of terms each containing a product
B1B2 · · ·Br = 0. Hence every element T of the finite-dimensional asso-
ciative algebra A∗ is nilpotent. Hence A∗ is nilpotent (Albert, Structure
of Algebras, p. 23). Hence A is nilpotent by Theorem 3.

Any nilpotent algebra is solvable, and any solvable (power-assoc-
iative) algebra is a nilalgebra. By Theorem 4 the concepts of nilpotent
algebra, solvable algebra, and nilalgebra coincide for finite-dimensional
alternative algebras. Hence there is a unique maximal nilpotent ideal
N (= solvable ideal = nilideal) in any finite-dimensional alternative
algebra A; we call N the radical of A. We have seen that the radical of
A/N is 0.

We say that A is semisimple in case the radical of A is 0, and omit
the proof that any finite-dimensional semisimple alternative algebra A

is the direct sum A = S1 ⊕ · · · ⊕St of simple algebras Si. The proof
is dependent upon the properties of the Peirce decomposition relative
to an idempotent e.

An element e of an (arbitrary) algebra A is called an idempotent
in case e2 = e 6= 0.

Proposition 3. Any finite-dimensional power-associative algebra,
which is not a nilalgebra, contains an idempotent e (6= 0).

Proof: A contains an element x which is not nilpotent. The sub-
algebra F [x] of A generated by x is a finite-dimensional associative
algebra which is not a nilalgebra. Then F [x] contains an idempotent e
(6= 0) (Albert, ibid), and therefore A does.



22 ALTERNATIVE ALGEBRAS

By (1′′) and (2′′) Le and Re are idempotent operators on A which
commute by (6′′) (“commuting projections”). It follows that A is the
vector space direct sum

(21) A = A11 + A10 + A01 + A00

where Aij (i, j = 0, 1) is the subspace of A defined by

(22) Aij = {xij | exij = ixij, xije = jxij} i, j = 0, 1.

Just as in the case of associative algebras, the decomposition of any
element x in A according to the Peirce decomposition (21) is

(23) x = exe + (ex− exe) + (xe− exe) + (x− ex− xe + exe).

We derive a few of the properties of the Peirce decomposition as follows:

(xijyji)e = (xij, yji, e) + xij(yjie)

= −(xij, e, yji) + xij(yjie)

= −jxijyji + jxijyji + ixijyji

= ixijyji

and similarly e(xijyji) = ixijyji, so

(24) AijAji ⊆ Aii, i, j = 0, 1.

That is, A11 and A00 are subalgebras of A, while A10A01 ⊆ A11,
A01A10 ⊆ A00. Also x11y00 = (ex11e)y00 = e [x11(ey00)] = 0 by (7), and
similarly y00x11 = 0. Hence A11 and A00 are orthogonal subalgebras of
A. Similarly AiiAij ⊆ Aij, AijAjj ⊆ Aij, etc.

We wish to define the class of Cayley algebras mentioned in the
Introduction. We construct these algebras in the following manner.
The procedure works slightly more smoothly if we assume that F has
characteristic 6= 2, so we make this restriction here although it is not
necessary.

An algebra A with 1 over F is called a quadratic algebra in case
A 6= F1 and for each x in A we have

(25) x2 − t(x)x + n(x)1 = 0, t(x), n(x) in F .
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If x is not in F1, the scalars t(x), n(x) in (25) are uniquely determined;
set t(α1) = 2α, n(α1) = α2 to make the trace t(x) linear and the norm
n(x) a quadratic form.

An involution (involutorial anti-isomorphism) of an algebra A is a
linear operator x → x on A satisfying

(26) xy = y x, x = x for all x, y in A.

Here we are concerned with an involution satisfying

(27) x + x ∈ F1, xx(= xx) ∈ F1 for all x in A.

Clearly (27) implies (25) with

(27′) x + x = t(x)1, xx(= xx) = n(x)1 for all x in A

(since 1 = 1, we have t(α1) = 2α, n(α1) = α2 from (27)).
Let B be an algebra with 1 having dimension n over F and such

that B has an involution x → x satisfying (27). We construct an
algebra A of dimension 2n over F with the same properties and having
B as subalgebra (with 1 ∈ B) as follows: A consists of all ordered pairs
x = (b1, b2), bi in B, addition and multiplication by scalars defined
componentwise, and multiplication defined by

(28) (b1, b2)(b3, b4) = (b1b3 + µb4b2, b1b4 + b3b2)

for all bi in B and some µ 6= 0 in F . Then 1 = (1, 0) is a unity element
for A, B′ = {(b, 0) | b ∈ B} is a subalgebra of A isomorphic to B,
v = (0, 1) is an element of A such that v2 = µ1 and A is the vector
space direct sum A = B′ + vB′ of the n-dimensional vector spaces B′,
vB′. Identifying B′ with B, the elements of A are of the form

(29) x = b1 + vb2 (b1 in B uniquely determined by x),

and (28) becomes

(28′) (b1 + vb2)(b3 + vb4) = (b1b3 + µb4b2) + v(b1b4 + b3b2)

for all bi in B and some µ 6= 0 in F . Defining

(30) x = b1 − vb2,
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we have xy = y x by (28′) since b → b is an involution of B; hence
x → x is an involution of A. Also

x + x = t(x)1, xx(= xx) = n(x)1

where, for x in (29), we have

(31) t(x) = t(b1), n(x) = n(b1)− µn(b2).

Assume that the norm on B is a nondegenerate quadratic form;
that is, the associated symmetric bilinear form

(32) (a, b) = 1
2
[n(a + b)− n(a)− n(b)] (= 1

2
t(ab))

is nondegenerate (if (a, b) = 0 for all b in B, then a = 0). Then the norm
n(x) on A defined by (31) is nondegenerate. For y = b3 + vb4 implies
that (x, y) = 1

2
[n(x + y)− n(x)− n(y)] = 1

2
[n(b1 + b3) −µn(b2 + b4)−

n(b1) + µn(b2)− n(b3) + µn(b4)] = (b1, b3)− µ(b2, b4). Hence (x, y) = 0
for all y = b3 + vb4 implies (b1, b3) = µ(b2, b4) for all b3, b4 in B. Then
b4 = 0 implies (b1, b3) = 0 for all b3 in B, or b1 = 0 since n(b) is
nondegenerate on B; similarly b3 = 0 implies (b2, b4) = 0 (since µ 6= 0)
for all b4 in B, or b2 = 0. That is, x = 0; n(x) is nondegenerate on A.

When is A alternative? Since A is its own reciprocal algebra, it
is sufficient to verify the left alternative law (1′), which is equiva-
lent to (x, x, y) = 0 since (x, x, y) = (x, t(x)1 − x, y) = −(x, x, y).

Now (x, x, y) = n(x)y − (b1 + vb2)
[
(b1b3 − µb4b2) + v(b1b4 − b3b2)

]
=

n(x)y −
[
b1(b1b3) − µb1(b4b2) + µ(b1b4)b2 − µ(b3b2)b2

]
− v

[
b1(b1b4) −

b1(b3b2) + (b1b3)b2 − µ(b4b2)b2

]
= n(x)y −

[
n(b1)− µn(b2)

]
(b3 + vb4)−

µ(b1, b4, b2) − v(b1, b3, b2) = −µ(b1, b4, b2) − v(b1, b3, b2) by a trivial ex-
tension of the Theorem of Artin. Hence A is alternative if and only if
B is associative.

The algebra F1 is not a quadratic algebra, but the identity operator
on F1 is an involution satisfying (27); also n(α1) is nondegenerate on
F1. Hence we can use an iterative process (beginning with B = F1)
to obtain by the above construction algebras of dimension 2t over F ;
these depend completely upon the t nonzero scalars µ1, µ2, . . . , µt used
in the successive steps. The norm on each algebra is a nondegenerate
quadratic form. The 2-dimensional algebras Z = F1 + v1(F1) are
either quadratic fields over F (µ1 a nonsquare in F ) or isomorphic to
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F ⊕ F (µ1 a square in F ). The 4-dimensional algebras Q = Z + v2Z

are associative central simple algebras (called quaternion algebras) over
F ; any Q which is not a division algebra is (by Wedderburn’s theorem
on simple associative algebras) isomorphic to the algebra of all 2 × 2
matrices with elements in F .

We are concerned with the 8-dimensional algebras C = Q + v3Q

which are called Cayley algebras over F . Since any Q is associative,
Cayley algebras are alternative. However, no Cayley algebra is associa-
tive. For Q is not commutative and there exist q1, q2 in Q such that
[q1, q2] 6= 0; hence (v3, q2, q1) = (v3q2)q1 − v3(q2q1) = v3[q1, q2] 6= 0 by
(28′). Thus this iterative process of constructing alternative algebras
stops after three steps. The quadratic form n(x) is nondegenerate; also
it permits composition in the sense that

(33) n(xy) = n(x)n(y) for all x, y in C.

For n(xy)1 = (xy)(xy) = xyy x = n(y)xx = n(x)n(y)1. Also

(34) t ((xy)z) = t (x(yz)) for all x, y, z in A.

For (x, y, z) = −(z, y, x) = (z, y, x) implies (xy)z + z(y x) = x(yz) +
(z y)x, so that (34) holds.

Theorem 5. Two Cayley algebras C and C′ are isomorphic if and
only if their corresponding norm forms n(x) and n′(x′) are equivalent
(that is, there is a linear mapping x → xH of C into C′ such that

(35) n′(xH) = n(x) for all x in C;

H is necessarily (1–1) since n(x) is nondegenerate).

Proof: Suppose C and C′ are isomorphic, the isomorphism being
H. Then (25) implies (xH)2− t(x)(xH) + n(x)1′ = 0 where 1′ = 1H is
the unity element of C′. But also (xH)2 − t′(xH)(xH) + n′(xH)1′ = 0.
Hence [t′(xH)− t(x)] (xH) + [n(x)− n′(xH)] 1′ = 0. If x /∈ F1, then
xH /∈ F1′ and n(x) = n′(xH). On the other hand n(α1) = α2 =
n′(α1′), and we have (35) for all x in C.

For the converse we need to establish the fact that, if B is a proper
subalgebra of a Cayley algebra C, if B contains the unity element 1
of C, and if (relative to the nondegenerate symmetric bilinear form
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(x, y) defined on C by (32)) B is a non-isotropic subspace of C (that
is, B ∩B⊥ = 0), then there is a subalgebra A = B + vB (constructed
as above). For the involution x → x on C induces an involution on
B, since b = t(b)1 − b is in B for all b in B. Also B non-isotropic
implies C = B ⊥ B⊥ with B⊥ non-isotropic (Jacobson, Lectures in
Abstract Algebra, vol. II, p. 151; Artin, Geometric Algebra, p. 117).
Hence there is a non-isotropic vector v in B⊥, n(v) = −µ 6= 0. Since
t(v) = t(v1) = 2(v, 1) = 0, we have

(36) v2 = µ1, µ 6= 0 in F .

Now vB ⊆ B⊥ since (34) implies (va, b) = 1
2
t
(
(va)b

)
= 1

2
t
(
v(ab)

)
=

(v, ba) = 0 for all a, b in B. Hence B ⊥ vB. Also vB has the same
dimension as B since b → vb is (1–1). Suppose vb = 0; then v(vb) =
v2b = µb = 0, implying b = 0. In order to show that A = B ⊥ vB is
the algebra constructed above, it remains to show that

(37) a(vb) = v(ab),

(38) (va)b = b(va),

(39) (va)(vb) = µba

for all a, b in B. Now t(v) = 0 implies v = −v; hence v in B⊥ implies
0 = 2(v, b) = t(vb) = vb + bv = vb− bv, or

(40) bv = vb for all b in B.

Hence (v, a, b) + (a, v, b) = 0 = (va)b− v(ab) + (av)b = (va)b− v(ab) +
(va)b − a(vb) = [t(a)1− a] vb − v(ab), establishing (37). Applying the
involution to b(va) = v(ba), and using (40), we have (38). Finally
(va)(vb) = (va)(bv) = v(ab)v = v2(ba) = µba by the Moufang identity
(9). Hence A = B ⊥ B⊥ is the subalgebra specified. Since B and B⊥

are non-isotropic, so is A. [Remark: we have shown incidentally that
if Q is any quaternion subalgebra containing 1 in a Cayley algebra C,
then Q may be used in the construction of C as C = Q + vQ.]

Now let C and C′ have equivalent norm forms n(x) and n′(x′). Let
B (and B′) be as above. If B and B′ are isomorphic under H0, then
the restrictions of n(x) and n′(x′) to B and B′ are equivalent. Then by
Witt’s theorem (Jacobson, ibid, p. 162; Artin, ibid, p. 121), since n(x)
and n′(x′) are equivalent, the restrictions of n(x) and n′(x′) to B⊥ and
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B′⊥ are equivalent. Choose v in B⊥ with n(v) 6= 0; correspondingly we
have v′ in B′⊥ such that n′(v′) = n(v). Then a+ vb → aH0 + v′(bH0) is
an isomorphism of B ⊥ vB onto B′ ⊥ v′B′ by the construction above.
Hence if we begin with B = F1, B′ = F1′, repetition of the process
gives successively isomorphisms between Z and Z′, Q and Q′, C and C′.

A Cayley algebra C is a division algebra if and only if n(x) 6= 0 for
every x 6= 0 in C. For x 6= 0, n(x) = 0 imply xx = n(x)1 = 0, C has
zero divisors. Conversely, if n(x) 6= 0, then x(xy) = (xx)y = n(x)y for
all y implies 1

n(x)
LxLx = 1C, L−1

x = 1
n(x)

Lx and similarly R−1
x = 1

n(x)
Rx;

hence if n(x) 6= 0 for all x 6= 0, then C is a division algebra.
[Remark: If F is the field of all real numbers, the norm form n(x) =∑

αi
2 for x =

∑
αiui clearly has the property above. Also there are

alternative algebras F1, Z, Q, C with this norm form (take µi = −1
at each step). Hence there are real alternative division algebras of
dimensions 1, 2, 4, 8. It has recently been proved (see reference [12]
of the appended bibliography of recent papers) that finite-dimensional
real division algebras can have only these dimensions. It is not true,
however, that the only finite-dimensional real division algebras are the
four listed above; they are the only alternative ones. For other examples
of finite-dimensional real division algebras (necessarily of these specified
dimensions of course) see reference [23] in the bibliography of the 1955
Bulletin article.]

Corollary. Any two Cayley algebras C and C′ with divisors of zero
are isomorphic.

Proof: Show first that C has divisors of zero if and only if there
is w /∈ F1 such that w2 = 1. For 1 − w 6= 0, 1 + w 6= 0 imply
(1− w)(1 + w) = 1− w2 = 0 (note t(w) = 0 implies 1± w = 1∓ w so
that n(1 ± w) = 0). Conversely, if C has divisors of zero, there exists
x 6= 0 in C with n(x) = 0. Then x = α1+u, u ∈ (F1)⊥ = {u | t(u) = 0}
implies 0 = n(x)1 = xx = (α1 + u)(α1− u) = α21− u2. If α 6= 0, then
w = α−1u satisfies w2 = 1 (w /∈ F1). If α = 0, then n(u) = 0 so that
u is an isotropic vector in the non-isotropic space (F1)⊥. Hence there
exists w in (F1)⊥ with n(w) = −1 (Jacobson, ibid, p. 154, ex. 3), or
w2 = t(w)w − n(w)1 = 1 (w /∈ F1).

Now let e1 = 1
2
(1 − w), e2 = 1 − e1 = 1

2
(1 + w). Then e1

2 = e1,
e2

2 = e2, e1e2 = e2e1 = 0 (e1 and e2 are orthogonal idempotents). Also
n(ei) = 0 for i = 1, 2. Hence every vector in eiC is isotropic since
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n(eix) = n(ei)n(x) = 0. This means that eiC is a totally isotropic
subspace (eiC ⊆ (eiC)⊥). Hence dim(eiC) ≤ 1

2
dim C = 4 (Jacobson,

p. 170; Artin, p. 122). But x = 1x = e1x + e2x for all x in C, so
C = e1C + e2C. Hence dim(eiC) = 4, and n(x) has maximal Witt index
= 4 = 1

2
dim C. Similarly n′(x′) has maximal Witt index = 4. Hence

n(x) and n′(x′) are equivalent (Artin, ibid). By Theorem 5, C and C′

are isomorphic.

Over any field F there is a Cayley algebra without divisors of zero
(take µ = 1 so v2 = 1). This unique Cayley algebra over F is called
the split Cayley algebra over F .

F1 is both the nucleus and center of any Cayley algebra. Also
any Cayley algebra is simple (hence central simple over F ). (This is
obvious for all but the split Cayley algebra.) For, if I is any nonzero
ideal of C, there is x 6= 0 in I. But x is contained is some quaternion
subalgebra Q of C. Then Q × Q is an ideal of the simple algebra Q.
Hence 1 ∈ Q = Q×Q ⊆ I, and I = C.

We omit the proof of the fact that the only alternative central sim-
ple algebras of finite dimension which are not associative are Cayley
algebras. (Actually the following stronger result is known: any simple
alternative ring, which is not a nilring and which is not associative, is
a Cayley algebra over its center; in the finite-dimensional case the re-
striction eliminating nilalgebras is not required since Theorem 4 implies
that A2 6= A for a finite-dimensional alternative nilalgebra). Hence the
simple components Si in a finite-dimensional semisimple alternative
algebra are either associative or Cayley algebras over their centers.

The derivation algebra D(C) of any Cayley algebra of characteristic
6= 3 is a central simple Lie algebra of dimension 14, called an exceptional
Lie algebra of type G (corresponding to the 14-parameter complex ex-
ceptional simple Lie group G2). The related subject of automorphisms
of Cayley algebras is studied in [33].



IV. Jordan Algebras

In the Introduction we defined a (commutative) Jordan algebra J

over F to be a commutative algebra in which the Jordan identity

(1) (xy)x2 = x(yx2) for all x, y in J

is satisfied. Linearization of (1) requires that we assume F has charac-
teristic 6= 2; we make this assumption throughout IV. It follows from
(1) and the identities (2), (3) below that any scalar extension JK of a
Jordan algebra J is a Jordan algebra.

Replacing x in

(1′) (x, y, x2) = 0 for all x, y in J

by x + λz (λ ∈ F ), the coefficient of λ is 0 since F contains at least
three distinct elements, and we have

(2) 2(x, y, zx) + (z, y, x2) = 0 for all x, y, z in J.

Replacing x in (2) by x + λw (λ ∈ F ), we have similarly (after dividing
by 2) the multilinear identity

(3) (x, y, wz) + (w, y, zx) + (z, y, xw) = 0 for all w, x, y, z in J.

Recalling that La = Ra since J is commutative, we see that (3) is
equivalent to

(3′) [Rx, Rwz] + [Rw, Rzx] + [Rz, Rxw] = 0 for all w, x, z in J

and to

(3′′) RzRxy −RzRyRx + RyRzx −Ry(zx) + RxRzy −RxRyRz = 0

for all x, y, z in J.

Interchange x and y in (3′′) and subtract to obtain

(4) [Rz, [Rx, Ry]] = R(x,z,y) = Rz[Rx,Ry ] for all x, y, z in J.

29
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Now (4) says that, for all x, y in J, the operator [Rx, Ry] is a derivation
of J, since the defining condition for a derivation D of an arbitrary
algebra A may be written as

[Rz, D] = RzD for all z in A.

Our first objective is to prove that any Jordan algebra J is power-
associative. As in III we define powers of x by x1 = x, xi+1 = xxi, and
prove

(5) xixj = xi+j for all x in J.

For any x in J, write Gx = Rx ∪ Rx2 . Then the enveloping algebra
G∗

x is commutative, since the generators Rx, Rx2 commute by (1). For
i ≥ 2, we put y = x, z = xi−1 in (3′′) to obtain

(6) Rxi+1 = Rxi−1Rx2 −Rxi−1R2
x −R2

xRxi−1 + 2RxRxi .

By induction on i we see from (6) that Rxi is in G∗ for i = 3, 4, . . . .
Hence

(7) RxiRxj = RxjRxi for i, j = 1, 2, 3, . . .

Then, in a proof of (5) by induction on i, we can assume that xixj+1 =
xi+j+1; then xi+1xj = (xxi)xj = xRxiRxj = xRxjRxi = xj+1xi = xi+j+1

as desired.
One can prove, by a method similar to the proof of Theorem 4 in

III (only considerably more complicated since the identities involved
are more complicated), that any finite-dimensional Jordan nilalgebra
is nilpotent. We omit the proof, which involves also a proof of the fact
that

(8) Rx is nilpotent for any nilpotent x

in a finite-dimensional Jordan algebra.

As in III, this means that there is a unique maximal nilpotent (= solv-
able = nil) ideal N which is called the radical of J. Defining J to
be semisimple in case N = 0, we have seen that J/N is semisim-
ple. The proof that any semisimple Jordan algebra S is a direct sum
S = S1 ⊕ · · · ⊕St of simple Si is quite complicated for arbitrary F ;
we shall use a trace argument to give a proof for F of characteristic 0.
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Let e be an idempotent in a Jordan algebra J. Put i = 2 and x = e
in (6) to obtain

(9) 2R3
e − 3R2

e + Re = 0;

that is, f(Re) = 0 where f(λ) = (λ− 1)(2λ− 1)λ. Hence the minimal
polynomial for Re divides f(λ), and the only possibilities for charac-
teristic roots of Re are 1, 1

2
, 0 (1 must occur since e is a characteristic

vector belonging to the characteristic root 1: eRe = e2 = e 6= 0). Also
the minimal polynomial for Re has simple roots. Hence J is the vector
space direct sum

(10) J = J1 + J1/2 + J0

where

(11) Ji = {xi | xie = ixi} , i = 1, 1/2, 0.

Taking a basis for J adapted to the Peirce decomposition (10), we see
that Re has for its matrix relative to this basis the diagonal matrix
diag{1, 1, . . . , 1, 1/2, 1/2, . . . , 1/2, 0, 0, . . . , 0} where the number of 1’s
is dim J1 > 0 and the number of 1/2’s is dim J1/2. Hence

(12) trace Re = dim J1 + 1
2
dim J1/2.

If F has characteristic 0, then trace Re 6= 0.
A symmetric bilinear form (x, y) defined on an arbitrary algebra

A is called a trace form (associative or invariant symmetric bilinear
form) on A in case

(13) (xy, z) = (x, yz) for all x, y, z in A.

If I is any ideal of an algebra A on which such a bilinear form is defined,
then I⊥ is also an ideal of A: for x in I, y in I⊥, a in A imply that xa
and ax are in I so that (x, ay) = (xa, y) = 0 and (x, ya) = (ya, x) =
(y, ax) = 0 by (13). In particular, the radical A⊥ = {x | (x, y) =
0 for all y ∈ A} of the trace form is an ideal of A.

We also remark that it follows from (13) that (xRy, z) = (x, zLy)
and (xLy, z) = (z, yx) = (zy, x) = (x, zRy) so that, for right (or left)
multiplications Si determined by bi,

(14) (xS1S2 · · ·Sh, y) = (x, yS ′
h · · ·S ′

2S
′
1)
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where S ′
i is the left (or right) multiplication determined by bi; then, if

B is any subset of A,

(15) (xT, y) = (x, yT ′) for all x, y in A, T in B∗,

where T ′ is in B∗.

Theorem 6. The radical N of any finite-dimensional Jordan alge-
bra J over F of characteristic 0 is the radical J⊥ of the trace form

(16) (x, y) = trace Rxy for all x, y in J.

Proof: Without any assumption on the characteristic of F it fol-
lows from (4) that (x, y) in (16) is a trace form: (xy, z) − (x, yz) =
trace R(x,y,z) = 0 since the trace of any commutator is 0. Hence J⊥

is an ideal of J. If J were not a nilideal, then (by Proposition 3) J⊥

would contain an idempotent e (6= 0) and, assuming characteristic 0,
(e, e) = trace Re 6= 0 by (12), a contradiction. Hence J⊥ is a nilideal
and J⊥ ⊆ N. Conversely, if x is in N, then xy is in N for every y in A,
and Rxy is nilpotent by (8). Hence (x, y) = trace Rxy = 0 for all y in
A; that is, x is in J⊥. Hence N ⊆ J⊥, N = J⊥.

Theorem 7. Let A be a finite-dimensional algebra over F (of ar-
bitrary characteristic) satisfying

(i) there is a nondegenerate (associative) trace form (x, y) defined
on A, and

(ii) I2 6= 0 for every ideal I 6= 0 of A.

Then A is (uniquely) expressible as a direct sum A = S1 ⊕ · · · ⊕St of
simple ideals Si.

Proof: Let S (6= 0) be a minimal ideal of A. Since (x, y) is a trace
form, S⊥ is an ideal of A. Hence the intersection S ∩ S⊥ is either 0
or S, since S is minimal. We show that S totally isotropic (S ⊆ S⊥)
leads to a contradiction.

For, since S2 6= 0 by (ii), we know that the ideal of A generated
by S2 must be the minimal ideal S. Thus S = S2 + S2M where
M is the multiplication algebra of A. Any element s in S may be
written in the form s =

∑
(aibi)Ti for ai, bi in S, where Ti = T ′

i is
the identity operator 1A or Ti is in M. For every y in A we have by
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(15) that (s, y) =
∑

((aibi)Ti, y) =
∑

(aibi, yT ′
i ) =

∑
(ai, bi(yT ′

i )) = 0
since bi(yT ′

i ) ∈ S ⊆ S⊥. Then s = 0 since (x, y) is nondegenerate;
S = 0, a contradiction. Hence S∩S⊥ = 0; that is, S is non-isotropic.
Hence A = S ⊥ S⊥ and S⊥ is non-isotropic. That is, A = S ⊕S⊥,
the direct sum of ideals S, S⊥, and the restriction of (x, y) to S⊥ is
a nondegenerate (associative) trace form defined on S⊥. That is, (i)
holds for S⊥ as well as A. Moreover, any ideal of the direct summand
S or S⊥ is an ideal of A; hence S is simple and (ii) holds for S⊥.
Induction on the dimension of A completes the proof.

Corollary. Any (finite-dimensional) semisimple Jordan algebra J

over F of characteristic 0 is (uniquely) expressible as a direct sum
J = S1 ⊕ · · · ⊕St of simple ideals Si.

Proof: By Theorem 6 the (associative) trace form (16) is nonde-
generate; hence (i) is satisfied. Also any ideal I such that I2 = 0 is
nilpotent; hence I = 0, establishing (ii).

As mentioned above, the corollary is actually true for F of charac-
teristic 6= 2. What remains then, as far as the structure of semisimple
Jordan algebras is concerned, is a determination of the central simple
algebras. The first step in this is to show that every semisimple J

(hence every simple J) has a unity element 1. Again the argument we
use here is valid only for characteristic 0, whereas the theorem is true
in general.

We begin by returning to the Peirce decomposition (10) of any
Jordan algebra J relative to an idempotent e. The subspaces J1 and J0

are orthogonal subalgebras of J which are related to the subspace J1/2

as follows:

(17) J1/2J1/2 ⊆ J1 + J0, J1J1/2 ⊆ J1/2, J0J1/2 ⊆ J1/2.

For we may put x = e, z = xi ∈ Ji, y = yj ∈ Jj in (2) to obtain
2i(e, yj, xi) + (xi, yj, e) = 0, or (1− 2i) [(xiyj)e− j(xiyj)] = 0, so that

(18) JiJj ⊆ Jj if i 6= 1/2.

Hence J1
2 ⊆ J1, J0

2 ⊆ J0, J1J0 = J0J1 ⊆ J0 ∩ J1 = 0, so J1 and J0 are
orthogonal subalgebras by (18), and also the last two inclusions in (17)
hold. Put x = x1/2, z = y1/2, y = w = e in (3) and write x1/2y1/2 =
a = a1 + a1/2 + a0 to obtain 1

2
(x1/2, e, y1/2) + (e, e, a) + 1

2
(y1/2, e, x1/2) =
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(e, e, a) = 0. Hence ea − e(ea) = a1 + 1
2
a1/2 − e(a1 + 1

2
a1/2) =

a1 + 1
2
a1/2−a1− 1

4
a1/2 = 1

4
a1/2 = 0. Hence x1/2y1/2 = a1 +a0 ∈ J1 +J0,

establishing (17).
Now

(19) trace Rb = 0 for all b ∈ J1/2.

For b in J1/2 implies trace Rb = 2 trace Reb = 2(e, b) = 2(e2, b) =
2(e, eb) = (e, b) by (16) and (13), so trace Rb = (e, b) = 0. Writing
x = x1 + x1/2 + x0, y = y1 + y1/2 + y0 in accordance with (10), we have
xy = (x1y1 + x1/2y1/2 + x0y0) + (x1y1/2 + x1/2y1 + x1/2y0 + x0y1/2) with
the last term in parentheses in J1/2 by (17). Hence (19) implies that

(20) (x, y) = trace Rx1y1+x1/2y1/2+x0y0 .

Now x1/2y1/2 = c = c1 + c0 (ci in Ji) implies trace Rc1 + trace Rc0 =
trace Rc = (x1/2, y1/2) = 2(ex1/2, y1/2) = 2(e, x1/2y1/2) = 2 trace Re(c1+c0)

= 2 trace Rc1 , so that trace Rc1 = trace Rc0 . Then (20) may be written
as

(20′) (x, y) = trace Rx1y1+z0 , z0 = 2c0 + x0y0 in J0.

In any algebra A over F an idempotent e is called principal in case
there is no idempotent u in A which is orthogonal to e (u2 = u 6=
0, ue = eu = 0); that is, there is no idempotent u in the subspace
A0 = {x0 | x0 ∈ A, ex0 = x0e = 0}. In a finite-dimensional Jordan
algebra J, this means that e is a principal idempotent of J if and only
if the subalgebra J0 (in the Peirce decomposition (10) relative to e) is
a nilalgebra.

Now any finite-dimensional Jordan algebra J which is not a nilal-
gebra contains a principal idempotent. For J contains an idempotent e
by Proposition 3. If e is not principal, there is an idempotent u in J0,
e′ = e + u is idempotent, and J1,e′ (the J1 relative to e′) contains prop-
erly J1,e = J1. For x1 in J1,e implies x1e

′ = x1(e + u) = x1e + x1u = x1,
or x1 is in J1,e′ . That is, J1,e ⊆ J1,e′ . But u ∈ J1,e′ , u /∈ J1,e. Then
dim J1,e < dim J1,e′ , and this process of increasing dimensions must
terminate, yielding a principal idempotent.

Theorem 8. Any semisimple (hence any simple) Jordan algebra
J of finite dimension over F of characteristic 0 has a unity element 1.



JORDAN ALGEBRAS 35

Proof: J has a principal idempotent e. Then J0 is a nilalgebra, so
that (x, y) = trace Rx1y1 by (20′) since trace Rz0 = 0 by (8). Hence x
in J1/2 + J0 implies x1 = 0, (x, y) = 0 for all y in J, so x is in J⊥. That
is, J1/2 + J0 ⊆ J⊥ = N = 0, or J = J1, e = 1.

If J contains 1 and e1 6= 1, then e2 = 1 − e1, is an idempotent,
and the Peirce decompositions relative to e1 and e2 coincide (with dif-
fering subscripts). We introduce a new notation: J11 = J1,e1 (= J0,e2),
J12 = J1/2,e1 (= J1/2,e2), J22 = J0,e1 (= J1,e2). More generally, if
1 = e1 + e2 + · · · + et for pairwise orthogonal idempotents ei, we have
the refined Peirce decomposition

(21) J =
∑
i≤j

Jij

of J as the vector space direct sum of subspaces Jii = J1,ei
(1 ≤ i ≤ t),

Jij = J1/2,ei
∩ J1/2,ej

(1 ≤ i < j ≤ t); that is,

(22)
Jii = {x | x ∈ J, xei = x},
Jij = Jji = {x | x ∈ J, xei = 1

2
x = xej}, i 6= j.

Multiplicative relationships among the Jij are consequences of (17) and
the statement preceding it.

An idempotent e in J is called primitive in case e is the only idem-
potent in J1 (that is, e cannot be written as the sum e = u + v of
orthogonal idempotents), and absolutely primitive in case it is primi-
tive in any scalar extension JK of J. A central simple Jordan algebra J

is called reduced in case 1 = e1 + · · ·+ et for pairwise orthogonal abso-
lutely primitive idempotents ei in J. In this case it can be shown that
the subalgebras Jii in the Peirce decomposition (22) are 1-dimensional
(Jii = Fei) and that the subspaces Jij (i 6= j) all have the same dimen-
sion. If J is a central simple algebra over F , there is a scalar extension
JK which is reduced (for example, take K to be the algebraic closure
of F ), and it can be shown that the number t of pairwise orthogonal
absolutely primitive idempotents ei in JK such that 1 = e1 + · · ·+ et is
unique; t is called the degree of J.

We list without proof all (finite-dimensional) central simple Jordan
algebras J of degree t over F of characteristic 6= 2. Recall from the
Introduction that J is a special Jordan algebra in case J is isomorphic to
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a subalgebra of an algebra A+ where A is associative and multiplication
in A+ is defined by

(23) x · y = 1
2
(xy + yx).

We say that each algebra is of type A, B, C, D, or E listed below.

AI. J ∼= A+ with A any central simple associative algebra (nec-
essarily of dimension t2 over F ).

AII. Let A be any involutorial simple associative algebra over F ,
the involution being of the second kind (so that the center Z of A is
a quadratic extension of F and the involution induces a non-trivial
automorphism on Z (Albert, Structure of Algebras, p. 153)). Then
J ∼= H(A), the t2-dimensional subalgebra of self-adjoint elements in the
2t2-dimensional algebra A+. If J is of type AI or AII, and if K is the
algebraic closure of F , then JK

∼= K+
t where Kt is the algebra of all

t× t matrices with elements in K.

B, C. Let A be any involutorial central simple associative algebra
over F (so the involution is of the first kind). Then J ∼= H(A), the
subalgebra of self-adjoint elements in A+. There are two types (B and
C) which may be distinguished by passing to the algebraic closure K
of F , so that AK is a total matrix algebra. In case B the (extended)
involution on AK is transposition (a → a′) so that A has dimension
t2 and J has dimension 1

2
t(t + 1) over F . In case C the (extended)

involution on AK is a → g−1a′g where g =

(
0 1t

−1t 0

)
so that A has

dimension 4t2 and J has dimension 2t2 − t over F .

D. Let (x, y) be any nondegenerate symmetric bilinear form on
a vector space M of dimension n ≥ 2. Then J is the vector space direct
sum J = F1 + M, multiplication in the (n + 1)-dimensional algebra J

being defined by xy = (x, y)1 for all x, y in M. Here t = 2 (dim J ≥ 3).

E. The algebra C3 of all 3×3 matrices with elements in a Cayley
algebra C over F has the standard involution x → x′ (conjugate trans-
pose). The 27-dimensional subspace H(C3) of self-adjoint elements

(24)

ξ1 c b
c ξ2 a
b a ξ3

, ξi in F , a, b, c in C,
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is a (central simple) Jordan algebra of degree t = 3 under the multiplica-
tion (23) where xy is the multiplication in C3 (which is not associative).
Then J is any algebra such that some scalar extension JK

∼= H(C3)K

(= H((CK)3)).

The possibility of additional algebras of degree 1, mentioned in the
1955 Bulletin article, has been eliminated in reference [32] of the bibli-
ography of more recent papers. The proof involves use of a two-variable
identity which is easily seen to be true for special Jordan algebras. But
any such identity is then true for arbitrary Jordan algebras since it has
been proved that the free Jordan algebra with two generators is special
[71; 38], a result which is false for three generators [9]. The identity in
question is

(25) {aba}2 =
{
a{ba2b}a

}
for all a, b in J,

where {abc} is defined in a Jordan algebra J by {abc} = (ab)c+(bc)a−
(ac)b, so that {aba} = b(2Ra

2 − Ra2). Hence in A+ (A associative) we
have {aba} = 2(b · a) · a − b · a2 = aba, so that {aba}2 = aba2ba =
{a{ba2b}a}. Then (25) is satisfied in any special Jordan algebra (in
particular, the free Jordan algebra with two generators) and thus in
any Jordan algebra.

Therefore all (finite-dimensional) separable Jordan algebras are
known, and the Wedderburn decomposition theorem stated in the 1955
Bulletin article is valid without restriction. Some of the computations
employed in the original proof may be eliminated [79].

A central simple Jordan algebra of degree 2 (that is, of type D) is a
commutative quadratic algebra with 1 (a2 − t(a)a + n(a)1 = 0) having
nondegenerate norm form n(a), and conversely. For a = α1+x, x ∈ M,
implies a2 − t(a)a + n(a)1 = 0 where t(a) = 2α, n(a) = α2 − (x, x),
and n(a) is nondegenerate if and only if (x, y) is.

The algebras of types A, B, C are special Jordan algebras by defi-
nition. An algebra of type D is a subalgebra of A+, where A is the (as-
sociative) Clifford algebra of (x, y) (Artin, Geometric Algebra, p. 186).
But algebras of type E are not special (as we show below), and are
therefore called exceptional central simple Jordan algebras. Excep-
tional Jordan division algebras exist (over suitable fields F ; but not,
for example, over a finite field or the field of all real numbers) [2]. If an
exceptional central simple Jordan algebra J is not a division algebra,
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then it is reduced, and J is isomorphic to an algebra H(C3, Γ) of self-
adjoint elements in C3 under a canonical involution x → Γ−1x′Γ where
Γ = diag{γ1, γ2, γ3}, γi 6= 0 in F . Isomorphism of reduced exceptional
simple Jordan algebras is studied in [8].

The unifying feature in the list of central simple Jordan algebras
above is that, for t > 2, a reduced central simple Jordan algebra is iso-
morphic to the algebra H(Dt, Γ) defined as follows: D is an alternative
algebra (of dimension 1, 2, 4, or 8) with unity element u and involution
d → d satisfying d + d ∈ Fu, dd = n(d)u, n(d) nondegenerate on D; Dt

is the algebra of all t× t matrices with elements in D; Γ = diag{γ1, γ2,
. . . , γt}, γi 6= 0 in F . Then x → Γ−1x′Γ is a canonical involution in Dt,
and the set H(Dt, Γ) of all self-adjoint elements in Dt is a subalgebra of
D+

t (that is, we do not need A associative to define A+ by (23)). If D

is associative, then Dt = D⊗F Ft is associative, and J ∼= H(Dt, Γ) is a
special Jordan algebra. If D is not associative, then J ∼= H(Dt, Γ) is not
a Jordan algebra unless t = 3. Hence we have J of type B if D = F1; J

of type A if D = Z (type AI if Z = F ⊕ F ; type AII if Z is a quadratic
field over F ); J of type C if D = Q; J of type E if t = 3 and D = C.
The corresponding dimensions for J are clearly t + 1

2
t(t − 1)(dim D);

that is, 1
2
t(t + 1) for type B, t2 for type A, 2t2 − t for type C, and 27

for type E.

Theorem 9. Any central simple Jordan algebra J of type E is
exceptional (that is, is not a special Jordan algebra).

Proof: It is sufficient to prove that H(C3) is not special. For, if
J were special, then J ∼= J′ ⊆ A+ with A associative implies JK =
K ⊗ J ∼= K ⊗ J′ ⊆ K ⊗A+ = (K ⊗A)+ = AK

+ so that H((CK)3) ∼= JK

is special, a contradiction.

Suppose that H(C3) is special. There is an associative algebra A (of
possibly infinite dimension over F ) such that U is an isomorphism of
H(C3) into A+. For i = 1, 2, 3 define elements ei in A and 8-dimensional
subspaces

Si = {di | d ∈ C}

of A by

(26) xU = ξ1e1 + ξ2e2 + ξ3e3 + a1 + b2 + c3
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for x in (24); that is, for ξi in F and a, b, c in C. (Note that our notation
is such that we will never use e for an element of C). Then

(27) S = Fe1 + Fe2 + Fe3 + S1 + S2 + S3 = H(C3)U

is a 27-dimensional subspace of A. S is a subalgebra of A+. The
mapping V = U−1 defined on S (not on all of A) is an isomorphism of
S onto H(C3):

(28) (xU · yU)V = x · y for all x, y in H(C3).

For our proof we do not need all of the products in A+ of elements of
S. However, performing the multiplications in H(C3), we see that (28)
yields

(29) ei
2 = ei (6= 0), i = 1, 2, 3;

(30) ei · ej = 0, i 6= j;

(31) ei · ai = 0, a in C, i = 1, 2, 3;

(32) ei · aj = 1
2
aj, a in C, i 6= j;

(33) ui
2 = ej + ek, i, j, k distinct,

where u is the unity element in C; and

(34) 2ai · bj = (b a)k,

a, b in C, i, j, k a cyclic permutation of 1, 2, 3.

Now (29) and (30) imply that ei (i = 1, 2, 3) are pairwise orthogonal
idempotents. For A is associative, so eiej + ejei = 0 for i 6= j implies
ei

2ej + eiejei = 0 = eiejei + ejei
2, or eiej = ejei; hence eiej = 0 for

i 6= j. By an identical proof it follows from (31) that

(31′) eiai = aiei = 0, i = 1, 2, 3.

For i, j, k distinct, (32) implies eiaj + ajei = aj = ekaj + ajek; then
faj + ajf = 2aj for the idempotent f = ei + ek. Hence f 2aj + fajf =
2faj, so fajf = faj and similarly fajf = ajf ; that is, faj = ajf = aj:

(35) (ei + ek)aj = aj = aj(ei + ek), i, j, k distinct.
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Also (32) implies eiaj = aj − ajei, so eiajei = ajei − ajei
2 = 0:

(36) eiajei = 0, i 6= j.

For any a in C, define

(37) a′ = e1a3u3 in A.

Then (ab)′ = e1(ab)3u3 = e1(b1 a2 + a2 b1)u3 = e1a2 b1u3 by (34) and
(31′). Also (34) implies a3u1 + u1a3 = (u a)2 = a2 and

(38) u2b3 + b3u2 = b1.

Hence (ab)′ = e1(a3u1 + u1a3)(u2b3 + b3u2)u3 = e1a3u1(u2b3 + b3u2)u3

by (31′). Now b3u2u3 = b3u2(e1 + e3)u3 = b3u2e1u3 = (b1− u2b3)e1u3 =
−u2b3e1u3 = −u2(e1 + e3)b3e1u3 = −u2e1b3e1u3 = 0 by (35), (31′),
(38), and (36). Also u1u2b3 = u1u2(e1 + e2)b3 = u1u2e1b3 = (u3 −
u2u1)e1b3 = u3e1b3 by (35), (31′), (34). Hence (ab)′ = e1a3u1u2b3u3 =
e1a3u3e1b3u3 = a′b′.

Clearly the mapping a → a′ is linear; hence it is a homomorphism
of C onto the subalgebra C′ of A consisting of all a′. Since C is simple,
the kernel of this homomorphism is either 0 or C; in the latter case 0 =
u′ = e1u3

2 = e1(e1 + e2) = e1 6= 0 by (33), and we have a contradiction.
Hence a → a′ is an isomorphism. But C′ is associative, whereas C is
not. Hence H(C3) is an exceptional Jordan algebra.

Any central simple exceptional Jordan algebra J over F is a cubic
algebra: for any x in J,

(39) x3 − T (x)x2 + Q(x)x−N(x)1 = 0,

T (x), Q(x), N(x) in F .

Here x2x = xx2 (= x3) since J is commutative. It is sufficient to show
(39) for H(C3). But x in (24) implies (39) where

(40) T (x) = ξ1 + ξ2 + ξ3,

(41)
Q(x) = ξ1ξ2 + ξ2ξ3 + ξ3ξ1 − n(a)− n(b)− n(c)

= 1
2

[
(T (x))2 − T (x2)

]
,

(42) N(x) = ξ1ξ2ξ3 − ξ1n(a)− ξ2n(b)− ξ3n(c) + t(abc);
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if F has characteristic 6= 3 (as well as 6= 2), formula (42) may be written
as

(42′) N(x) = 1
6

[
(T (x))3 − 3T (x)T (x2) + 2T (x3)

]
.

The cubic norm form (42) satisfies N ({xyx}) = [N(x)]2 N(y); that is,
N(x) permits a new type of composition [35; 69].

In the 1955 Bulletin article, only passing mention is made in §7
of the relationships between exceptional central simple Jordan alge-
bras J and exceptional simple Lie algebras and groups; relationships
which stem from the fact that the derivation algebra D(J) is a central
simple Lie algebra of dimension 52, called an exceptional Lie algebra
of type F (corresponding to the 52-parameter complex exceptional Lie
group F4)—a proof of this for F of characteristic 6= 2 appears in [36]
(characteristic 6= 2, 3 in [70]). Since 1955 the relationships, including
a characterization of Cayley planes by means of H(C3, Γ), have been
vigorously exploited [18; 19; 20; 35; 36; 37; 39; 70; 76; 78; 81; 82].



V. Power-associative Algebras

We recall that an algebra A over F is called power-associative in
case the subalgebra F [x] generated by any element x of A is associative.
We have seen that this is equivalent to defining, for any x in A,

x1 = x, xi+1 = xxi for i = 1, 2, 3, . . .,

and requiring

(1) xixj = xi+j for i, j = 1, 2, 3, . . .

All algebras mentioned in the Introduction are power-associative (Lie
algebras trivially, since x2 = 0 implies xi = 0 for i = 2, 3, . . . ). We shall
encounter in V new examples of power-associative algebras.

The most important tool in the study of noncommutative power-
associative algebras A is the passage to the commutative algebra A+.
Let F have characteristic 6= 2 throughout V; we shall also require that
F contains at least four distinct elements. The algebra A+ is the same
vector space as A over F , but multiplication in A+ is defined by

(2) x · y = 1
2
(xy + yx) for x, y in A,

where xy is the (nonassociative) product in A. If A is power-associative,
then (as in the Introduction) powers in A and A+ coincide, and it follows
that A+ is a commutative power-associative algebra.

Let A be power-associative. Then (2) implies

(3) x2x = xx2 for all x in A

and

(4) x2x2 = x(xx2) for all x in A.

In terms of associators, we have

(3′) (x, x, x) = 0 for all x in A

and

(4′) (x, x, x2) = 0 for all x in A.

42
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Also (3) may be written in terms of a commutator as

(3′′) [x2, x] = 0 for all x in A.

Using the linearization process employed in IV, we obtain from (3′′),
by way of the intermediate identity

(3′′′) 2[x · y, x] + [x2, y] = 0 for all x, y in A,

the multilinear identity

(3m) [x · y, z] + [y · z, x] + [z · x, y] = 0 for all x, y, z in A.

Similarly, assuming four distinct elements in F , (4) is equivalent to

(4′′) 2(x, x, x · y) + (x, y, x2) + (y, x, x2) = 0 for all x, y in A,

to

(4′′′)
2(x, y, x · z) + 2(x, z, x · y) + 2(y, x, x · z) + 2(x, x, y · z)

+ 2(z, x, x · y) + (y, z, x2) + (z, y, x2) = 0

for all x, y, z in A,

and finally to the multilinear identity

(4m)

(x, y, z · w) + (z, y, w · x) + (w, y, x · z)

+(y, x, z · w) + (z, x, w · y) + (w, x, y · z)

+(z, w, x · y) + (x, w, y · z) + (y, w, z · x)

+(w, z, x · y) + (x, z, y · w) + (y, z, w · x) = 0

for all x, y, z, w in A,

where in each row of the formula (4m) we have left one of the four
elements x, y, z, w fixed in the middle position of the associator and
permuted the remaining three cyclically.

We omit the proof of the fact that, if F has characteristic 0, then
identities (3) and (4) are sufficient to insure that an algebra is power-
associative; the proof involves inductions employing the multilinear
identities (3m) and (4m). We omit similarly a proof of the fact that,
if F has characteristic 6= 2, 3, 5, the single identity (4) in a commuta-
tive algebra implies power-associativity. One consequence of this latter
fact is that in a number of proofs concerning power-associative algebras
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separate consideration has to be given to the characteristic 3 or 5 case
by bringing in associativity of fifth or sixth powers and an assumption
that F contains at least 6 distinct elements. We shall omit these details,
simply by assuming characteristic 6= 3, 5 upon occasion.

An algebra A over F is called strictly power-associative in case
every scalar extension AK is power-associative. If A is a commutative
power-associative algebra over F of characteristic 6= 2, 3, 5, then A is
strictly power-associative. The assumption of strict power-associativity
is employed in the noncommutative case, and in the commutative case
of characteristic 3 or 5, when one wishes to use the method of extension
of the base field.

Let A be a finite-dimensional power-associative algebra over F .
Just as in the proofs of Propositions 1 and 2, one may argue that A

has a unique maximal nilideal N, and that A/N has maximal nilideal
0. For if A is a power-associative algebra which contains a nilideal I

such that A/I is a nilalgebra, then A is a nilalgebra. [If x is in A, then
xs = xs = 0 for some s, so that xs = y ∈ I and xrs = (xs)r = yr = 0 for
some r.] Since any homomorphic image of a nilalgebra is a nilalgebra,
it follows from the second isomorphism theorem that, if B and C are
nilideals, then so is B+C. For (B+C)/C ∼= B/(B∩C) is a nilalgebra,
so B + C is. This establishes the uniqueness of N. It follows as in the
proof of Proposition 2 that 0 is the only nilideal of A/N. N is called the
nilradical of A, and A is called semisimple in case N = 0. Of course any
anticommutative algebra (for example, any Lie algebra) is a nilalgebra,
and hence is its own nilradical. Hence this concept of semisimplicity is
trivial for anticommutative algebras.

For the moment let A be a commutative power-associative algebra,
and let e be an idempotent in A. Putting x = e in (4′′) and using
commutativity, we have y(2Re

3 − 3Re
2 + Re) = 0 for all y in A, or

(5) 2Re
3 − 3Re

2 + Re = 0

for any idempotent e in a commutative power-associative algebra A. As
we have seen in the case of Jordan algebras in IV, this gives a Peirce
decomposition

(6) A = A1 + A1/2 + A0

of A as a vector space direct sum of subspaces Ai defined by

(7) Ai = {xi | xie = ixi}, i = 1, 1/2, 0; A commutative.
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Now if A is any power-associative algebra, the algebra A+ is a commuta-
tive power-associative algebra. Hence we have the Peirce decomposition
(6) where

(7′) Ai = {xi | exi + xie = 2ixi}, i = 1, 1/2, 0.

Put y = z = e in (3m) and let x = xi ∈ Ai as in (7′) to obtain
(2i− 1)[xi, e] = 0; that is, xie = exi if i 6= 1/2. Hence (7′) becomes

(7′′)
Ai = {xi | exi = xie = ixi}, i = 1, 0;

A1/2 = {x1/2 | ex1/2 + x1/2e = x1/2}

in the Peirce decomposition (6) of any power-associative algebra A.
As we have just seen, the properties of commutative power-associative
algebras may be used (via A+) to obtain properties of arbitrary power-
associative algebras.

Let A be a commutative power-associative algebra with Peirce de-
composition (6), (7) relative to an idempotent e. Then A1 and A0 are
orthogonal subalgebras of A which are related to A1/2 as follows:

A1/2A1/2 ⊆ A1 + A0,

(8) A1A1/2 ⊆ A1/2 + A0,

A0A1/2 ⊆ A1 + A1/2.

Note that the last two inclusion relations of (8) are weaker than for
Jordan algebras in IV. The proofs are similar to those in IV, and are
given by putting x = e, y = yj ∈ Aj, z = xi ∈ Ai in (4′′′). We omit
the details except to note that the characteristic 3 case of orthogonality
requires associativity of fifth powers.

For x ∈ A1, w ∈ A1/2, we have wx = (wx)1/2 + (wx)0 ∈ A1/2 + A0

by (8). Then w → (wx)1/2 is a linear operator on A1/2 which we denote
by Sx:

(9) wSx = (wx)1/2 for x ∈ A1, w ∈ A1/2.

If H is the (associative) algebra of all linear operators on A1/2, then
x → 2Sx is a homomorphism of A1 into the special Jordan algebra H+,
for x → Sx is clearly linear and we verify

(10) Sxy = SxSy + SySx for all x, y in A1
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as follows: put x ∈ A1, y ∈ A1, z = e, w ∈ A1/2 in (4m) to obtain

(11) e [y(wx) + x(wy) + w(xy)] + w(xy)− 2x(yw)− 2y(xw) = 0,

since e(yw) = 1
2
(yw)1/2 implies x [e(yw)] = 1

2
x(yw)1/2 = 1

2
x(yw) and

y [e(xw)] = 1
2
y(xw) by interchange of x and y. By taking the A1/2

component in (11), we have (10) after dividing by 3. Similarly, defining
the linear operator Tz on A1/2 for any z in A0 by

(12) wTz = (wz)1/2 for z ∈ A0, w ∈ A1/2,

we have

(13) Tzy = TzTy + TyTz for all z, y in A0,

and

(14) SxTz = TzSx for all x in A1, z in A0.

This is part of the basic machinery used in developing the structure
theory for commutative power-associative algebras as reported in the
1955 Bulletin article. The result that simple algebras (actually rings)
of degree greater than 2 are Jordan has been extended by the same
technique to flexible power-associative rings (the conclusion being that
A+ is Jordan) [58]. All semisimple commutative power-associative al-
gebras of characteristic 0 are Jordan algebras [51]. The determination
of all simple commutative power-associative algebras of degree 2 and
characteristic p > 0 is still not complete [1; 24].

Here we shall develop only as much of the technique as will be
required in the proof of the following generalization of Wedderburn’s
theorem that every finite associative division ring is a field (Artin, Geo-
metric Algebra, p. 37). In IV it was mentioned that exceptional Jordan
division algebras do exist over suitable fields F ; however, F cannot be
finite in that event and we assume this particular case of the following
theorem (as well as Wedderburn’s theorem) in the proof of

Theorem 10. Let D be a finite power-associative division ring of
characteristic 6= 2, 3, 5. Then D is a field.

For the proof we require an exercise and a lemma.

Exercise. If u and v are orthogonal idempotents in a commutative
power-associative algebra A, then

(15) RuRv = RvRu.
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(Hint: put x = u, y = v in (4′′′) and use (5). After considerable
manipulation, and use of characteristic 6= 3, 5, this (together with what
one obtains by interchanging u and v) will yield (15).)

Lemma. Let e be a principal idempotent in a commutative power-
associative algebra A (that is, A0 in (7) is a nilalgebra). Then every
element in A1/2 is nilpotent.

Proof: To obtain (18′) below, one does not need to assume that e
is principal. For any w ∈ A1/2 put x = w, y = e in (4′′) to obtain

(16) w3 − w(ew2)− ew3 = 0 for w in A1/2

Let x = (w2)1 ∈ A1, z = (w2)0 ∈ A0, so that w2 = x + z, ew2 = x,
w(ew2) = wx = (wx)1/2 + (wx)0. Also w3 = wx + wz = (wx)1/2 +
(wx)0 + (wz)1/2 + (wz)1 so that ew3 = 1

2
(wx)1/2 + 1

2
(wz)1/2 + (wz)1.

Then (16) implies (wx)1/2 = (wz)1/2, or

(17) wSx = wTz for any w in A1/2

where w2 = x + z, x = (w2)1, z = (w2)0. Now

(18) wSx
k = wTz

k for k = 1, 2, 3, . . .

For (17) is the case k = 1 of (18) and, assuming (18), we have wSx
k+1 =

wSx
kSx = wTz

kSx = wSxTz
k = wTz

k+1 by (14). But (10) and (13)
imply Sxk = 2k−1Sx

k, Tzk = 2k−1Tz
k, so (18) yields

(18′) wSxk = wTzk for k = 1, 2, 3, . . .

where w is any element of A1/2 and w2 = x + z, x ∈ A1, z ∈ A0.
Now let e be a principal idempotent in A. Then every element w

in A1/2 is nilpotent. For z = (w2)0 is nilpotent, and zk = 0 for some k.
By (18′) we have w2k+1 = w(w2)k = w(x + z)k = w(xk + zk) = wxk =
(wxk)1/2 + (wxk)0 = wSxk + (wxk)0 = (wxk)0 in A0 is nilpotent; hence
w is nilpotent.

We use the Lemma to prove that any finite-dimensional power-
associative division algebra D over a field F has a unity element 1.
For D+ is a (finite-dimensional) commutative power-associative alge-
bra without nilpotent elements 6= 0, so D+ contains a principal idem-
potent e (as in IV, D+ contains an idempotent e; if e is not principal,
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there is an idempotent u ∈ D+
0 = D+

0,e, e′ = e + u is idempotent,
dim D+

1,e < dim D+
1,e′ , and the increasing dimensions must terminate).

By the Lemma, since 0 is the only nilpotent element in D+, we have
D+

1/2 = D+
0 = 0, D+ = D+

1 , e is a unity element for D+. By (7′′) e is a
unity element for D.

Proof of Theorem 10: We are assuming that D is a finite power-
associative division ring. We have seen in II that this means that D

is a (finite-dimensional) division algebra over a (finite) field. Hence we
have just seen that D has a unity element 1, so that D is an algebra over
its center. Thus we may as well take D to be an algebra over its center
F , a finite field. Hence F is perfect (Zariski-Samuel, Commutative
Algebra, vol. I, p. 65).

Now D+ is a Jordan algebra over F . For let x, y be any elements
of D+. If x ∈ F1, the Jordan identity

(19) (x · y) · x2 = x · (y · x2) for all x, y in D+

holds trivially. Otherwise the (commutative associative) subalgebra
F [x] of D+ is a finite (necessarily separable) extension of F , so there
is an extension K of F such that F [x]K = K ⊕ K ⊕ · · · ⊕ K, x is a
linear combination x = ξ1e1 + ξ2e2 + · · · + ξnen of pairwise orthogonal
idempotents ei in F [x]K ⊆ (D+)K with coefficients in K. In order to
establish (19), it is sufficient to establish

(19′) (ei · y) · (ej · ek) = ei · [y · (ej · ek)] , i, j, k = 1, . . . , n.

For j 6= k, (19′) is obvious; for j = k, (19′) reduces to (15).
Now the radical of D+ (consisting of nilpotent elements) is 0. Al-

though our proof of the Corollary to Theorem 7 is valid only for char-
acteristic 0, we remarked in IV that the conclusion is valid for char-
acteristic 6= 0. Hence D+ is a direct sum S1 ⊕ · · · ⊕ Sr of r simple
ideals Si, each with unity element ei. The existence of an idempotent
e 6= 1 in D+ is sufficient to give zero divisors in D, a contradiction,
since the product e(1 − e) = 0 in D. Hence r = 1 and D+ is a sim-
ple Jordan algebra over F . Let C be the center of D+. Then C is a
finite separable extension of F , C = F [z], z ∈ C (Zariski-Samuel, ibid,
p. 84). If D+ = C = F [z], then D = F [z] is a field, and the theorem
is established. Hence we may assume that D+ 6= C, so D+ is a central
simple Jordan algebra of degree t ≥ 2 over the finite field C and is
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of one of the types A–E listed in IV. We are assuming that type E is
known not to occur. The other types are eliminated as follows.

Wedderburn’s theorem implies that, over any finite field, there are
no associative central division algebras of dimension > 1. Hence, by
Wedderburn’s theorem on simple associative algebras, every associative
central simple algebra over a finite field is a total matric algebra. Thus
we have the following possibilities:

AI. D+ ∼= Ct
+, t ≥ 2. Then Ct

+ contains an idempotent e11 6= 1,
a contradiction.

AII. D+ is the set H(Zt) of self-adjoint elements in Zt, Z a
quadratic extension of C, where the involution may be taken to be
a → g−1a′g with g a diagonal matrix. Hence H(Zt) contains e11 6= 1, a
contradiction.

B. D+ ∼= H(Ct), the involution being a → g−1a′g with g diago-
nal; hence H(Ct) contains e11 6= 1, a contradiction.

C. D+ ∼= H(C2t), the involution being a → g−1a′g, g =(
0 1t

−1t 0

)
; H(C2t) contains the idempotent e11 + et+1,t+1 6= 1, a

contradiction.

There remains the possibility that D+ might be of type D (where
the dimension is necessarily ≥ 3). The basis u1, . . . , un for M may
be normalized so that (ui, uj) = 0 for i 6= j, (ui, ui) = αi 6= 0 in C;
that is, ui

2 = αi1, ui · uj = 0 for i 6= j. Each of the fields C[ui] is
a quadratic extension of C. But in the sense of isomorphism there is
only one quadratic extension of the finite field C (Zariski-Samuel, ibid,
pp. 73, 83); hence all αi may be taken to be the same nonsquare α in
C. Let β be any element of C. Then w = βu1 + u2 /∈ F1 implies F [w]
is isomorphic to F [u1], so w2 = (β2 + 1)α1 = γ2α1, γ in C; that is, for
any β ∈ C, there is γ ∈ C satisfying

(20) γ2 = β2 + 1.

Now let P be the prime field of characteristic p contained in C. It
follows from (20) that all elements in P are squares of elements in C.
For 1 (also 0) satisfies this condition, and it follows by induction from
(20) that all elements in P do. In particular, −1 = β2 for some β ∈ C.
Then w2 = (βu1 + u2)

2 = 0, a contradiction.
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Theorem 11. Let A be a finite-dimensional power-associative al-
gebra over F satisfying the following conditions:

(i) there is an (associative) trace form (x, y) defined on A;

(ii) (e, e) 6= 0 for any idempotent e in A;

(iii) (x, y) = 0 if x · y is nilpotent, x, y in A.

Then the nilradical N of A coincides with the nilradical of A+, and is the
radical A⊥ of the trace form (x, y). The semisimple power-associative
algebra S = A/N satisfies (i)–(iii) with (x, y) nondegenerate. For any
such S we have

(a) S = S1 ⊕ · · · ⊕St for simple Si;

(b) S is flexible.

If F has characteristic 6= 5, then

(c) S+ is a semisimple Jordan algebra;

(d) S+
i is a simple (Jordan) algebra, i = 1, . . . , t.

Proof: By (i) we know from IV that A⊥ is an ideal of A. If there
were an idempotent e in A⊥, then (ii) would imply (e, e) 6= 0, a contra-
diction. Hence A⊥ is a nilideal: A⊥ ⊆ N. Conversely, x in N implies
x · y is in N for all y in A, so that (x, y) = 0 for all y in N by (iii), or
x is in A⊥. Hence N ⊆ A⊥, N = A⊥. Any ideal of A is clearly an ideal
of A+; hence any nilideal of A is a nilideal of A+, and N is contained
in the nilradical N1 of A+. But x in N1 implies x · y is in N1 for all y
in A+, or (x, y) = 0 by (iii) and we have N1 ⊆ A⊥ = N.

Now (x, y) induces a nondegenerate symmetric bilinear form (x, y)
on A/A⊥ = A/N where x = x + N, etc.; that is, (x, y) = (x, y).
Then (x y, z) = (xy, z) = (xy, z) = (x, yz) = (x, y z), so (x, y) is a
trace form. To show (ii) we take any idempotent e in A/N and use
the power-associativity of A to “lift” the idempotent to A: F [e] is a
subalgebra of A which is not a nilalgebra, so there is an idempotent
u ∈ F [e] ⊆ Fe + N, and u = e. Then (e, e) = (u, u) = (u, u) 6= 0.
Suppose x · y = x · y is nilpotent. Then some power of x · y is in N,
x · y is nilpotent, and (x, y) = (x, y) = 0, establishing (iii).

Now let S satisfy (i)–(iii) with (x, y) nondegenerate. Then the
nilradical of S is 0, and the hypotheses of Theorem 7 apply. For if
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I2 = 0 for an ideal I of S, then I is a nilideal, I = 0. We have
S = S1 ⊕ · · · ⊕ St for simple Si; also we know that the Si are not
nilalgebras (for then they would be nilideals of S), but this will follow
from (d).

Now (3′′′) implies that a · z = 0 where a = 2[x · y, x] + [x2, y].
Since a · z is nilpotent, (iii) implies (a, z) = ((xy)x, z) + ((yx)x, z) −
(x(xy), z)− (x(yx), z) + (x2y, z)− (yx2, z) = 0 for all x, y, z in S. The
properties of a trace form imply that

(21) (xy + yx, xz − zx) = (x2, zy − yz).

Interchange z and y to obtain (xz + zx, xy − yx) = (x2, yz − zy) =
(xy + yx, zx − xz) by (21). Add (xy + yx, xz + zx) to both sides of
this to obtain (xy, xz + zx) = (xy + yx, zx). Then (xy, xz) = (yx, zx),
so that

(22) ((xy)x, z) = (x(yx), z) for all x, y, z in S.

Since (x, y) is nondegenerate on S, (22) implies (xy)x = x(yx); that
is, S is flexible.

To prove (c) we note first that (x, y) is a trace form on S+:

(23) (x · y, z) = (x, y · z) for all x, y, z in S.

Also it follows from (23), just as in formula (14) of IV, that

(24) (yS1S2 · · ·Sh, z) = (y, zSh · · ·S2S1)

where Si are right multiplications of the commutative algebra S+. In
the commutative power-associative algebra S+ formula (4′′) becomes

(25) 4x2 · (x · y)− 2x · [x · (x · y)]− x · (y · x2)− y · x3 = 0.

Applying the same procedure as above, we write a for the left side of
(25), have a · z = 0 for all z in S+, so (iii) implies 4 (x2 · (x · y), z) −
2 (x · [x · (x · y)] , z)− (x · (y · x2), z)− (y · x3, z) = 0 or

(26) (y · z, x3) + 2 (x · [x · (x · y)], z) = 4(x · y, x2 · z)− (y · x2, x · z).

By (24) the left-hand side of (26) is unaltered by interchange of y and
z. Hence 4(x · y, x2 · z)− (y · x2, x · z) = 4(x · z, x2 · y)− (z · x2, x · y) so
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that (after dividing by 5) we have (x · y, x2 · z) = (y · x2, x · z). Hence
((x · y) · x2, z) = (x · (y · x2), z) for all z in S, or (x · y) ·x2 = x · (y ·x2),
S+ is a Jordan algebra. We know from IV that, since the nilradical of
S+ is 0, S+ is a direct sum of simple ideals, but it is conceivable that
these are not the Si

+ given by (a). To see that the simple components
of S+ are the Si

+ given by (a), we need to establish (d).
Let T be an ideal of Si

+; we need to show that T is an ideal of Si.
It follows from (a) that T is an ideal of S+, and is therefore by (c) a
direct sum of simple ideals of S+ each of which has a unity element.
The sum of these pairwise orthogonal idempotents in S+ is the unity
element e of T. Now e is an idempotent in S+ (and S), and the Peirce
decomposition (7′′) characterizes T as

(27) T = S1,e = {t ∈ S | et = te = t}.

Let s be any element of S. Then flexibility implies (s, t, e)+(e, t, s) = 0,
or

(28) (st)e− st + ts = e(ts) for all t ∈ T, s ∈ S.

But T an ideal of S+ implies that s · t ∈ T, so that st+ ts = e(st+ ts) =
e(st) + (st)e− st + ts by (27) and (28); that is, e(st) + (st)e = 2st, and
st is in T = S1,e by (7′). But then s · t in T implies ts is in T also; T is
an ideal of S. Then T ⊆ Si is an ideal of Si. Hence the only ideals of
Si

+ are 0 and Si
+. Since Si

+ cannot be a zero algebra, Si
+ is simple.

We list without proof the central simple flexible algebras A over
F which are such that A+ is a (central) simple Jordan algebra. These
are the algebras which (over their centers) can appear as the simple
components Si in (a) above:

1. A is a central simple (commutative) Jordan algebra.

2. A is a quasiassociative central simple algebra. That is, there
is a scalar extension AK , K a quadratic extension of F , such that AK is
isomorphic to an algebra B(λ) defined as follows: B is a central simple
associative algebra over K, λ 6= 1

2
is a fixed element of K, and B(λ)

is the same vector space over K as B but multiplication in B(λ) is
defined by

(29) x ∗ y = λxy + (1− λ)yx for all x, y in B

where xy is the (associative) product in B.
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3. A is a flexible quadratic algebra over F with nondegenerate
norm form.

Note that, except for Lie algebras, all of the central simple algebras
which we have mentioned in these notes are listed here (associative
algebras are the case λ = 1 (also λ = 0) in 2; Cayley algebras are
included in 3).

We should remark that, if an algebra A contains 1, any trace form
(x, y) on A may be expressed in terms of a linear form T (x). That is,
we write

(30) T (x) = (1, x) for all x in A,

and have

(31) (x, y) = T (xy) for all x, y in A

since (x1, y) = (1, xy). The symmetry and the associativity of the trace
form (x, y) are equivalent to the vanishing of T (x) on commutators and
associators:

(32)
T (xy) = T (yx),

T ((xy)z) = T (x(yz))
for all x, y, z in A.

If A is power-associative, hypotheses (ii) and (iii) of Theorem 11 become

(33) T (e) 6= 0 for any idempotent e in A,

and

(34) T (z) = 0 for any nilpotent z in A,

the latter being evident as follows: (34) implies that, if x ·y is nilpotent,
then 0 = T (x · y) = (1, x · y) = 1

2
(1, xy) + 1

2
(1, yx) = 1

2
(x, y) + 1

2
(y, x) =

(x, y) and, conversely, if z = 1 · z is nilpotent, then (iii) implies T (z) =
(1, z) = 0.

A natural generalization to noncommutative algebras of the class
of (commutative) Jordan algebras is the class of algebras J satisfying
the Jordan identity

(35) (xy)x2 = x(yx2) for all x, y in J.
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As in IV, we can linearize (35) to obtain

(35′) (x, y, w · z) + (w, y, z · x) + (z, y, x · w) = 0

for all w, x, y, z in J.

If J contains 1, then w = 1 in (35′) implies

(36) (x, y, z) + (z, y, x) = 0 for all x, y, z in J;

that is, J is flexible:

(37) (xy)x = x(yx) for all x, y in J.

If a unity element 1 is adjoined to J as in II, then a necessary and suf-
ficient condition that (35′) be satisfied in the algebra with 1 adjoined
is that both (35′) and (36) be satisfied in J. Hence we define a non-
commutative Jordan algebra to be an algebra satisfying both (35) and
(37).

Exercise. Prove: A flexible algebra J is a noncommutative Jordan
algebra if and only if any one of the following is satisfied:

(38) (x2y)x = x2(yx) for all x, y in J;

(39) x2(xy) = x(x2y) for all x, y in J;

(40) (yx)x2 = (yx2)x for all x, y in J;

(41) J+ is a (commutative) Jordan algebra.

We see from (41) that any semisimple algebra (of characteristic
6= 5) satisfying the hypotheses of Theorem 11 is a noncommutative
Jordan algebra.

Since (35′) and (36) are multilinear, any scalar extension AK of a
noncommutative Jordan algebra is a noncommutative Jordan algebra.
It may be verified directly that any noncommutative Jordan algebra is
power-associative (hence strictly power-associative).

Let J be any noncommutative Jordan algebra. By (41) J+ is a
(commutative) Jordan algebra, and we have seen in IV that a trace
form on J+ may be given in terms of right multiplications of J+. Our
application of this to the situation here works more smoothly if there is
a unity element 1 in J, so (if necessary) we adjoin one to J to obtain a
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noncommutative Jordan algebra J1 with 1 and having J as a subalgebra
(actually ideal). Then by the proof of Theorem 6 we know that

(42) (x, y) = trace R+
x·y = 1

2
trace(Rx·y + Lx·y)

for all x, y in J1

is a trace form on J1
+ where R+ indicates the right multiplication in

J1
+; hence (23) holds for all x, y, z in J1, where (x, y) is the symmetric

bilinear form (42). In terms of T (x) defined by (30), we see that (23)
is equivalent to

(43) T ((x · y) · z) = T (x · (y · z)) for all x, y, z in J1.

Now (36) implies

(44) Lxy − LyLx + RyRx −Ryx = 0 for all x, y in J1.

Interchanging x and y in (44), and subtracting, we have

(45) R[x,y] + L[x,y] = [Ry, Rx] + [Lx, Ly] for all x, y in J1.

Hence T ([x, y]) = (1, [x, y]) = 1
2
trace(R[x,y] + L[x,y]) = 0 by (42)

and (45). Then xy = x · y + 1
2
[x, y] implies T (xy) = T (x · y) =

1
2
T (xy) + 1

2
T (yx), or

(46) T (xy) = T (yx) = (x, y) for all x, y in J1

since T (x · y) = (1, x · y) = (x, y) by (23). Now (43) and (46) imply
that (x, y) is a trace form on J1. For 0 = 4T [(x · y) · z − x · (y · z)] =
T [(xy)z + (yx)z + z(xy) + z(yx)− x(yz)− x(zy)− (yz)x− (zy)x] =
2T [(xy)z − x(yz)− (zy)x + z(yx)] = 4T [(xy)z − x(yz)] by (36), so
T ((xy)z) = T (x(yz)), or (xy, z) = (x, yz) as desired. Then (42)
induces a trace form on the subalgebra J of J1.

Corollary to Theorem 11. Modulo its nilradical, any finite-
dimensional noncommutative Jordan algebra of characteristic 0 is
(uniquely) expressible as a direct sum S1 ⊕ · · · ⊕ St of simple ideals
Si. Over their centers these Si are central simple algebras of the
following types: (commutative) Jordan, quasiassociative, or flexible
quadratic.
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Proof: Only the verification for (x, y) in (42) of hypotheses (ii) and
(iii) remains. But these are (12) and (8) of IV.

It was remarked in IV that, although proof was given only for com-
mutative Jordan algebras of characteristic 0, the results were valid for
arbitrary characteristic (6= 2). The same statement cannot be made
here. The trace argument in Theorem 11 can be modified to give the
direct sum decomposition for semisimple algebras [58]. But new cen-
tral simple algebras occur for characteristic p [52; 55]; central simple
algebras which are not listed in the Corollary above are necessarily of
degree one [58] and are ramified in the sense of [35].

A finite-dimensional power-associative algebra A with 1 over F
is called a nodal algebra in case every element of A is of the form
α1 + z where α ∈ F and z is nilpotent, and A is not of the form
A = F1 + N for N a nil subalgebra of A. There are no such algebras
which are alternative (of arbitrary characteristic), commutative Jordan
(of characteristic 6= 2) [32], or noncommutative Jordan of characteristic
0. But nodal noncommutative Jordan algebras of characteristic p > 0
do exist. Any nodal algebra has a homomorphic image which is a simple
nodal algebra.

Let J be a nodal noncommutative Jordan algebra over F . Since the
commutative Jordan algebra J+ is not a nodal algebra, J+ = F1 + N+

where N+ is a nil subalgebra of J+; that is, J = F1 + N, where N is
a subspace of J consisting of all nilpotent elements of J, and x · y ∈ N

for all x, y ∈ N. For any elements x, y ∈ N we have

(47) xy = λ1 + z, λ ∈ F , z ∈ N.

There must exist x, y in N with λ 6= 0 in (47). Since N+ is a nilpotent
commutative Jordan algebra, the powers of N+ lead to 0; equivalently,
the subalgebra (N+)∗ of M(J+) is nilpotent. Now (47) implies yx =
−λ1+(2x ·y− z) and (xy)x = λx+ zx = x(yx) = −λx+2x(x ·y)−xz,
or

(48) x(x · y) = λx + x · z.

Now 0 = (x, x, y) + (y, x, x) = x2y − x(λ1 + z) + (−λ1 + 2x · y − z)x−
yx2 = 2x2y − 2λx− 2x · z + 4(x · y) · x− 2x(x · y)− 2x2 · y implies

(49) x2y = 2λx + 2x · z − 2(x · y) · x + x2 · y
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by (48). Defining

(47′) xiy = λi1 + zi, λi ∈ F , zi ∈ N,

linearization of (49) gives

(49′) (x1 · x2)y = λ1x2 + λ2x1 + x1 · z2 + x2 · z1

− (x1 · y) · x2 − (x2 · y) · x1 + (x1 · x2) · y.

Theorem 12. Let J be a simple nodal noncommutative Jordan
algebra over F . Then F has characteristic p, J+ is the pn-dimensional
(commutative) associative algebra J+ = F [1, x1, . . . , xn], xp

i = 0, n ≥ 2,
and multiplication in J is given by

(50) fg = f · g +
n∑

i,j=1

∂f

∂xi

· ∂g

∂xj

· cij, cij = −cji,

where at least one of the cij (= −cji) has an inverse.

Proof: Since J = F1 + N, every element a in J is of the form

(51) a = α1 + x, α ∈ F , x ∈ N.

By (51) every associator relative to the multiplication in J+ is an asso-
ciator

(52) [x1, x2, x3] = (x1 · x2) · x3 − x1 · (x2 · x3), xi ∈ N.

We shall first show that J+ is associative by showing that the subspace
B spanned by all of the associators (52) is 0. For any y in N, (49′)
implies that (x1 · x2)y is in N, so [(x1 · x2) · x3] y = λ3x1 · x2 + (x1 · x2) ·
z3 + x3 · [λ1x2 + λ2x1 + x1 · z2 + x2 · z1 − (x1 · y) · x2 − (x2 · y) · x1 +
(x1 · x2) · y]− [(x1 · x2) · y] · x3− (x3 · y) · (x1 · x2) + [(x1 · x2) · x3] · y by
(47′) and (49′). Interchange subscripts 1 and 3, and subtract, to obtain
[x1, x2, x3]y = [x1, x2, x3] + [x1, z2, x3] + [z1, x2, x3] − [x1 · y, x2, x3] −
[x1, x2 · y, x3] + [x3 · y, x2, x1] + [x1, x2, x3] · y, so that we have the first
inclusion in

(53) BN ⊆ B + B ·N, NB ⊆ B + B ·N.

The second part of (53) follows from nb = −bn + 2b · n for b in B, n in
N.



58 POWER-ASSOCIATIVE ALGEBRAS

Define an ascending series C0 ⊆ C1 ⊆ C2 · · · of subspaces Ci of J

by

(54) C0 = B, Ci+1 = Ci + Ci ·N.

Note that all the Ci are contained in N (actually in N · N · N, since
B is). Since (N+)∗ is nilpotent, there is a positive integer k such that
Ck+1 = Ck. We prove by induction on i that

(55) CiN ⊆ Ci+1, NCi ⊆ Ci+1.

The case i = 0 of (55) is (53). We assume (55) and prove that Ci+1N ⊆
Ci+2 as follows: by the assumption of the induction it is sufficient to
show

(56) (Ci ·N)N ⊆ Ci+1 + Ci+1 ·N.

Now the flexible law (36) is equivalent to

(57) (x · y)z = (yz) · x + (yx) · z − (y · z)x for all x, y, z in J.

Put x in Ci, y and z in N into (57), and use yz = µ1+w, µ ∈ F , w ∈ N,
to see that each term of the right-hand side of (57) is in Ci+1 + Ci+1 ·N
by the assumption (55) of the induction. We have established (56), and
therefore Ci+1N ⊆ Ci+2. Then, as above, NCi+1 ⊆ Ci+1N + Ci+1 ·N ⊆
Ci+2, and we have established (55). For the positive integer k such that
Ck+1 = Ck, we have Ck an ideal of J. For CkJ = Ck(F1 + N) ⊆ Ck by
(55), and similarly JCk ⊆ Ck. The ideal Ck, being contained in N, is
not J. Hence Ck = 0, since J is simple. But B ⊆ Ck, so B = 0, J+ is
associative.

An ideal I of an algebra A is called a characteristic ideal (or D-
ideal) in case I is mapped into itself by every derivation of A. A is
called D-simple if 0 and A are the only characteristic ideals of A.

We show next that the commutative associative algebra J+ is D-
simple. Interchange x and y in (36) to obtain

(36′) (y, x, z) + (z, x, y) = 0 for all x, y, z in J;

interchange y and z in (36) to obtain

(36′′) (x, z, y) + (y, z, x) = 0 for all x, y, z in J;



POWER-ASSOCIATIVE ALGEBRAS 59

adding (36) and (36′), and subtracting (36′′), we obtain the identity

(58) [x · y, z] = [x, z] · y + x · [y, z] for all x, y, z in J,

which is valid in any flexible algebra. Identity (58) is equivalent to the
statement that

(59) D = Rz − Lz for any z in J

is a derivation of J+. If I is an ideal of J+, then x · z is in I for all x
in I, z in J. If, furthermore, I is characteristic, then [x, z] = xD is in
I, since D in (59) is a derivation of J+. Hence xz = x · z + 1

2
[x, z] and

zx = x · z − 1
2
[x, z] are in I for all x in I, z in J; that is, I is an ideal

of J. Hence J simple implies that the commutative associative algebra
J+ is D-simple.

It is a recently proved result in the theory of commutative asso-
ciative algebras (see [24]) that, if A is a finite-dimensional D-simple
commutative associative algebra of the form A = F1 + R where R is
the radical of A, then (except for the trivial case A = F1 which may
occur at characteristic 0, and which does not give a nodal algebra) F
has characteristic p and A is the pn-dimensional algebra A = F [1, x1,
. . . , xn], xi

p = 0.
Now any derivation D of such an algebra has the form

(60) f → fD =
n∑

i=1

∂f

∂xi

· ai, ai ∈ A,

where the ai of course depend on the derivation D. Then (59) implies
that f → [f, g] is a derivation of J+ for any g in J. By (60) we have

(61) [f, g] =
n∑

i=1

∂f

∂xi

· ai(g), ai(g) ∈ J.

To evaluate the ai(g), note that xiD = [xi, g] = ai(g) and

(62) [g, xi] =
n∑

j=1

∂g

∂xj

· aj(xi).

Then aj(xi) = [xj, xi] implies ai(g) = −[g, xi] = −
n∑

j=1

∂g

∂xj

· [xj, xi], or

(63) [f, g] =
n∑

i,j=1

∂f

∂xi

· ∂g

∂xj

· [xi, xj]
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by (61), so that fg = f · g + 1
2
[f, g] implies (50) where cij = 1

2
[xi, xj]. If

every cij were in N, then N would be a subalgebra of A, a contradiction.
Hence at least one of the cij is of the form (51) with α 6= 0, so it has
an inverse, and n ≥ 2.

Not every algebra described in the conclusion of Theorem 12 is
simple (see [55]). However, all such algebras of dimension p2 are, and
for every even n there are simple algebras of dimension pn. There are
relationships between the derivation algebras of nodal noncommutative
Jordan algebras and recently discovered (non-classical) simple Lie al-
gebras of characteristic p [7; 11; 17; 68]. For a general discussion of Lie
algebras of characteristic p, see [61].
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